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We propose using a phonon pumping mechanism to transfer heat from a cold to a hot body using a

propagating modulation of the medium connecting the two bodies. This phonon pump can cool nano-

mechanical systems without the need for active feedback. We compute the lowest temperature that this

refrigerator can achieve.
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Freezing out atomic motion by cooling matter to abso-
lute zero temperature is a thought that has, for ages,
fascinated both scientists and laymen alike. In atomic
gases, techniques such as evaporative cooling can bring
temperatures down to the submicrokelvin scale, allowing
for the observation of quantum phenomena such as
Bose-Einstein condensation. In solid state matter, the ionic
motion takes the form of oscillations around equilibrium
positions, and completely freezing the system (in the case
of an insulator) means removing all lattice vibrations—
phonons—leaving solely the quantum mechanical zero-
point motion.

The quest for observing quantized mechanical motion in
macroscopic systems has incited several experimental
groups in recent years [1]. In most cases, cooling is ob-
tained by a feedback mechanism which involves optical or
electronic sensors and some control system that acts di-
rectly on a cantilever. In this Letter, we argue that it is
possible to cool a nanomechanical system without relying
on feedback control. The mechanism we propose acts
directly on the acoustic phonons carrying heat in and out
of the system without the need for monitoring its state. By
deforming the lattice in the medium connecting the me-
chanical system to its phonon thermal reservoir, one can
pump heat against a temperature gradient by extracting out
phonons. The mechanism resembles a classical cooling
cycle of a thermal machine and its physical basis is time-
reversal symmetry breaking. The pump works in both
coherent and incoherent phonon regimes.

Quantum coherent electron pumps have been studied
extensively since Thouless’s original proposal [2]. For
instance, using lateral quantum dots and quantum wires,
charge [3], spin [4], and heat [5] currents can be created in
the absence of bias by modulating adiabatically and peri-
odically in time two independent external parameters. In
contrast, pumping massless bosons such as acoustic pho-
nons is a much more subtle problem. For one, it is much
harder to pump adiabatically phonons due to the lack of a

large energy scale such as the Fermi energy. Moreover,
phonons not only obey a different wave equation but are
also not conserved when scattered by external perturba-
tions that couple linearly to the displacement field (i.e., a
driving force). The result in this case is entropy generation
in addition to pumping.
In practice on can pump phonons with minimum heat

generation by coupling quadratically to the displacement
field, either by locally modulating the propagation velocity
or by locally applying a pinning potential. An extreme
example of a pinning perturbation, which preserves pho-
non number, is one that imposes Dirichlet boundary con-
ditions to the displacement field at a given point in space.
When such a perturbation travels along a quasi-one-
dimensional medium, it works as a linear peristaltic pump.
Below, we show that this mechanism allows for cooling
down the system to a minimum temperature Tmin which, in
one-dimension, is given by the expression

Tmin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4
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r
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with �B ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5vB=2�

3c
p

, where TH is the temperature of
the hot thermal reservoir, � is the perturbation strength, c is
the phonon velocity, and vB is the barrier speed.
A scheme of the pumping cycle is shown in Fig. 1, where

the nanomechanical system to be cooled is represented by
the left (cold) side. The local modulation in the phonon
velocity or pinning potential works like a moving semi-
reflective barrier to the phonons. In process A ! B, the
barrier is translated from the cold to the hot side of a
cavitylike region. After it reaches the endpoint, another
barrierlike perturbation is activated at the opposite side of
the cavity (process B ! C). Then, in C ! A0, the first
barrier is deactivated and phonons from the hot reservoir
free expand into the cavity. The procedure is then repeated.
Interesting issues arise out of this simple process of

moving a reflective barrier (a ‘‘mirror’’) for phonons, in
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particular, that of phonon pressure across the barrier.
Indeed, a similar process to the one described above was
used by Bartoli when he attempted to show the applicabil-
ity of thermodynamics to electromagnetism and raised the
question of radiation pressure [6], which in turn inspired
Boltzmann in his studies of blackbody radiation [7].
The issue of phonon pressure is not trivial (and more subtle
than the case of photons) as phonons carry crystal momen-
tum (q) but not obviously physical linear momentum
(denoted by p). The connection between these two forms
of momentum requires anharmonicity and is given by
pq ¼ �d@q, where � is the Grüneisen parameter of

the lattice and d denotes the spatial dimension [8–10].
This impacts the relation between pressure and energy
density in a phonon gas; for instance, in the case of a
single acoustic mode, the relation takes the simple form
p ¼ �ð@F=@VÞT ¼ �E=V.

We begin by discussing first the case of a fully reflective
barrier. We can treat the problem as a gas of phonons,
which we cycle according to Fig. 1. Notice that the barrier
does not let heat pass through and the cooling is due to the
removal of internal energy from the left-hand side, dump-
ing it into the right-hand side, as explained below.

The expansion A ! B is adiabatic and reversible
(�SR;L ¼ 0, i.e., no heat exchange between left- and

right-hand sides). Recalling the standard equation for
massless bosons, dS ¼ dE=T þ EdV=VTd, we can relate
changes in energy to variations in volume. When the
barrier moves to the right, the change in internal energies
on the two sides are EB

L ¼ EA
L � pLVpipe=�d and EB

R ¼
EA
R þ pRVpipe=�d, where Vpipe is the swept volume. Then,

once we insert the other barrier to get to C, we redraw
the boundary of what L is. The volume of L changes
by a factor ðVL � VpipeÞ=VL. So in C we have EC

L ¼
ð1� Vpipe

VL
ÞEB

L, EC
R ¼ EB

R, and EC
pipe ¼ Vpipe

VL
EB
L, where the

last energy is the one inside the ‘‘pipe’’. Then, once the
right barrier is removed in going C ! A0, one redraws

the boundary of what R is, so EA0
L ¼ EC

L and EA0
R ¼ EC

R þ
EC
pipe. Putting it all together, we have
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R ¼ Vpipe

VL

�
EA
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�d
Vpipe

�
þ pRVpipe

¼
�
eL þ pR

�d

�
Vpipe þ . . . ; (2b)

where . . . stand for terms down by powers of Vpipe=VL;R,

and eR;L ¼ ER;L=VR;L are the intensive energy densities in

the two sides. All the work done occurs in A ! B and is
given by

WA!A0 ¼ ðpR � pLÞ
�d

Vpipe þ . . . ; (2c)

where the leading term is insensitive to changes in the
pressures pL;R as the volume expands. The unusual relation

between work and volume change shown in Eq. (2c) comes
from the fact that, in our scheme, volume changes also
require an increase in the number of unit cells, so that the
lattice unit cell volume is kept constant (i.e., no compres-
sion). The work required to add units cells leads to the �d
factor dividing the pressure difference. (Notice that this
factor is absent for photons, since � ¼ 1=d follows from
pq ¼ @q. In the case of light, there is no underlying lattice

system—an ‘‘ether’’—that needs to be accounted for.) In
the process A ! A0 described above, all entropy increase
occurs when the barrier is removed in going C ! A0, and
the second law of thermodynamics is satisfied. From this
analysis, we can compute the energy flux out of the left
reservoir per unit time of operation of the cycle

J E
L ¼

�
eL þ pL

�d

�
vB; (3)

where vB is the barrier speed. Here we use for total time the
duration of the A ! B stroke, assuming that the equilibra-
tion in the entropy production partC ! A0 is fast compared
to this time.

For our case of interest, eL ¼ �dT
dþ1
L =cd, where �d ¼

2gd!�ðdþ 1Þ=½ð4�Þd=2�ðd=2Þ�, with �ðzÞ and �ðzÞ denot-
ing the Riemann zeta and Gamma functions, respectively,
while g is a degeneracy factor. Notice that the energy flux
depends only on the intensive quantities for the system on
the left (and thus on TL), and not on any property on the
right-hand side of the barrier, in particular, its temperature.
This is a straightforward consequence of the fact that the
barrier is perfectly reflective, so one is not faced with the
difficulty of fighting a thermal gradient between the hot
and cold reservoirs. The idealized situation, however,
serves the purpose of displaying clearly the main principle
of our cooling mechanism.
Let us turn the discussion to the less idealized situation

when the barrier is not perfectly reflective, allowing some
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FIG. 1 (color online). Pumping cycle: A ! B ! C ! A0 (see
text for an explanation). A traveling lattice perturbation acts as a
semireflective barrier moving from a cold to hot reservoir. The
wide arrows indicate unimpeded heat flow.
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heat to be transmitted from the hot to the cold side. In this
case, we intuitively expect that the slower we move the
barrier, the more difficult it becomes to cool, because the
energy transferred in the operation A ! B ! C ! A0 de-
pends only on the volume swept by the barrier, but not on
the rate (as long as the A ! B stroke is done in a quasie-
quilibrium situation, allowing for thermal equilibration on
both sides of the barrier). In addition, the longer we take to
move the barrier to the right in the A ! B stroke, the more
heat is transferred through the transmitting barrier (the
total transfer scales linearly with the sweeping time). So
let us now compute the heat flow through the moving
barrier, and the conditions to attain net cooling for a semi-
reflective barrier moving with speed vB. Hereafter, for
simplicity, we focus on a purely one-dimensional case
(d ¼ 1).

For concreteness, consider a ‘‘moving mirror’’ corre-
sponding to a region in space where the atoms are coupled
to an external short-range potential, which is localized in
space. The position of this pinning potential is modulated
in time so as to make it travel at speed vB, causing the
reflection and transmission coefficients to depend on the
red- and blueshifted frequencies of the phonons coming
from the two reservoirs. Acoustic phonons in a one-
dimensional chain, interacting with such a ‘‘moving
mirror’’ potential of strength �, obey the following wave
equation in the continuum limit:

@2t uðx; tÞ � c2@2xuðx; tÞ ¼ ��c�ðx� vBtÞuðx; tÞ: (4)

It is simpler to work in the reference frame of the barrier,
t0 ¼ t and x0 ¼ x� vBt, where the wave equation becomes

½ð@t0 � vB@x0 Þ2 � c2@2x0 �uðx0; t0Þ ¼ ��c�ðx0Þuðx0; t0Þ: (5)

Let us consider plane wave solutions to Eq. (5) in the
two regions, to the left of the barrier (with amplitudes A�

!

and B�
!) and to its right (with Aþ

! and Bþ
!):

u�ðx0; t0Þ ¼
Z

d!ei!t0 ðA�
!e

�i!x0=vR þ B�
!e

i!x0=vLÞ; (6)

with vR ¼ c� vB and vL ¼ cþ vB. The function uðx0; t0Þ
and its partial time derivatives are continuous, but its
partial space derivative is not. Integrating Eq. (5) between
0� and 0þ yields the remaining boundary condition.
Matching the solutions on the two sides of the barrier using
the boundary conditions yields

Mþð!Þ
�
Aþ
!

Bþ
!

�
¼ M�ð!Þ

�
A�
!

B�
!

�
; (7a)

where

M�ð!Þ ¼ 1 1
�i!vL � �c=2 i!vR � �c=2

� �
: (7b)

Using Eqs. (7a) and (7b), the scattering matrix connecting
incoming and outgoing amplitudes can be computed:

Sð!Þ ¼
1

1þi2!=�
i2!=�

1þi2!=�
�i2!=�
1þi2!=�

�1
1þi2!=�

0
@

1
A: (8)

Now, to determine the heat transmission and reflection
coefficients, one needs to go back to the reference frame of
laboratory (i.e., that of the reservoirs), where the Bose-
Einstein occupation numbers of the phonons are known:

A�
! ¼ ð cvR

Þa�!c=vR
and B�

! ¼ ð cvL
Þb�!c=vL

, where ha�y
! a�!i ¼

nLð!Þ, hbþy
! bþ!i ¼ nRð!Þ, and ha�y

! bþ!i ¼ hbþy
! a�!i ¼ 0,

since phonons coming from different reservoirs are uncor-
related. Thus, the heat current leaving the left reservoir is
given by the expression

J Q
L ¼

Z 1

0
d!!½nLð!Þ � hb�y

! b�!i�: (9)

The quantity hb�y
! b�!i can be expressed in terms of the

distributions nL;Rð!Þ through the scattering matrix Sð!Þ.
After a few manipulations, we arrive at

J Q
L ¼

Z
d!!jS12ð!Þj2½nLð!Þ � nRð!Þ�

þ
Z

d!!jS11ð!Þj2
��
nLð!Þ �

�
c

vR

�
2
nL

�
!c

vR

��

�
�
nRð!Þ �

�
c

vL

�
2
nR

�
!c

vL

���
: (10)

The first line of Eq. (10) is the thermal heat current Ithermal

from left to right in the presence of a nonmoving barrier.
The second line, which we name Ipump, results from the

barrier motion and it is clearly zero when vB ! 0 (vL ¼
vR ¼ c). In the limit when the barrier amplitude is high,
� � TR;L, we obtain

J Q
L � 4�4

15

1

�2c2
ðT4

Lv
2
R � T4

Rv
2
LÞ: (11)

Notice that this current is always negative if TL < TR and
vB > 0 (with vR > vL), thus, as expected, we are fighting
this heat flux with the energy flux of Eq. (3). A net flux of

energy is indeed possible if we satisfy J E
L þ J Q

L > 0,
which requires

T2
L >

4�3

5

1

�2cvB

ðT4
Rv

2
L � T4

Lv
2
RÞ: (12)

As mentioned earlier, for a fully reflective barrier
(� ! 1), cooling can be obtained for any temperature
gradient. For a semireflective barrier, to leading order in
vB=c, cooling requires TL > Tmin, where Tmin is given by
Eq. (1) with TH ¼ TR. Notice that when TL ¼ TR ¼ T, the
proposed mechanism also allows one to transfer heat be-

tween reservoirs provided that T=� < ð1=2�Þ ffiffiffiffiffiffiffiffiffiffiffiffi
5=2�

p
, in-

dependently of the barrier speed.
A few remarks are in order. First, we note that the

inequality (12) is independent on �. In fact, anharmonicity
is not essential for the operation of the cooling mechanism.
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Although anharmonicity is necessary for equilibration to
occur in a closed system, it is not so in an open system
coupled to thermal reservoirs. For the latter, equilibration
and thermalization takes place over time scales of the order
of the time required for sound waves to propagate back and
forth through the system. Straightforward numerical simu-
lations of a harmonic linear chain of masses and springs
coupled to a thermal reservoir at finite temperature show
that, for practical purposes, fast equilibration is achieved
when the barrier moves between reservoirs with a speed a
few times smaller than c. This is important because anhar-
monic effects are very weak at low temperatures [11,12]
and should not significantly contribute to equilibration.
Second, work is inevitably done when the barriers are
activated and deactivated during the B ! C and C ! A0
processes. However, during a fixed cycle, this work does
not scale with the length of the cavity connecting the two
reservoirs, while the amount of energy extracted from the
cold reservoirs does. Therefore, the contribution of this
work to the energy balance of the cooling process can be
made very small for a sufficiently long cavity and due to
this reason we neglected it in our estimates of the minimum
cooling temperature Tmin. Finally, although Eq. (10) has
been derived assuming coherent heat transport, Eq. (3)
does not rely on quantum coherence. Hence, coherence is
not an essential ingredient for our heat pump.

Finally, let us discuss practical implementations. To
produce a propagating barrier, it is better to use electro-
mechanical couplings rather than purely mechanical ones,
since electronic control is both more precise and allows for
faster switching times. Strongly electrostrictive materials,
in which changes in phonon dispersion are caused by an
external electric field, could be used. In particular, electro-
strictive polymers such as poly-vinylidene fluoride
(PVDF), in which giant electrostriction has been observed
[13], appears to be a promising class of materials for
building phonon pumps. Like other one-dimensional sys-
tems, a single chain of PVDF has four acoustic phonon
branches: one longitudinal, two transverse, and one twist
mode. Being a highly ionic (or polar) polymer, PVDF has a
permanent dipole moment per monomer unit which cou-
ples to the external electric field, leading to a gap in the
acoustic twist mode dispersion. Therefore a local electric
field can virtually block the torsion modes with frequencies
below the gap from propagating in PVDF [14], which is
equivalent to introducing an infinite barrier for such pho-
nons in our scheme.

In this particular implementation, we can understand
more clearly other aspects of the phonon pump. For ex-
ample, the insertion or removal of the phonon barrier
corresponds to turning on or off the electric fields.
Because the field causes a phonon gap for the torsional
modes, if the insertion is adiabatic, the energy required to

do so is given by the phonon energy density that is ex-
cluded from the barrier region. As long as the barrier is
much narrower than the length of the channel, this energy
can be much smaller than the energy pumped as the barrier
is pushed along the polymer. In this case, the approxima-
tion of neglecting the switching on or off of the barrier
(via electric field) holds well. As explained in Ref. [14], for
an electric field of 10 MV=cm (a typical field for nanoscale
field effect devices), the threshold gap frequency for PVDF
corresponds to a temperature of roughly 5 K. Therefore, if
the device operates at temperatures below this range, these
phonons will be effectively blocked from participating in
heat transmission. Coupling PVDF to a grid of backgate
electrodes that can be individually controlled would effec-
tively produce a moving large barrier potential, as required
by our pump. To evaluate the cooling capability of the
pump, let us use 5 K as an estimate for � (set by the
threshold gap mentioned above) and a velocity ratio
vB=c ¼ 1=10. Then, �B � 0:4 K; it follows from Eq. (1)
that if TH ¼ 100 mK, Tmin � 20 mK, while if TH ¼
5 mK, Tmin � 40 �K.
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