109 research outputs found

    Crystal-field mediated electronic transitions of EuS up to 35 GPa

    Get PDF
    An advanced experimental and theoretical model to explain the correlation between the electronic and local structure of Eu2+ in two diferent environments within a same compound, EuS, is presented. EuX monochalcogenides (X: O, S, Se, Te) exhibit anomalies in all their properties around 14 GPa with a semiconductor to metal transition. Although it is known that these changes are related to the 4f 75d0 ?4f 65d1 electronic transition, no consistent model of the pressure-induced modifcations of the electronic structure currently exists. We show, by optical and x-ray absorption spectroscopy, and by ab initio calculations up to 35 GPa, that the pressure evolution of the crystal feld plays a major role in triggering the observed electronic transitions from semiconductor to the half-metal and fnally to the metallic state.Authors thank the financial support from Projects PGC2018-101464-B-I00, PGC2018-097520-A-I00 and MALTA-Consolider Team RED2018-102612-T (Ministerio de Ciencia, Innovación y Universidades) is acknowledged. V. Monteseguro acknowledges the “Beatriz Galindo” fellowship (BG20/000777) and the “Juan de la Cierva” fellowship (IJC2019-041586-I). Authors are grateful to the staff of the BM23 beamline and the high-pressure laboratory at the ESRF for their support during the experiment (proposal number HC-3913), and the SERCAMAT (SCTI) of the University of Cantabria for FTIR facilities

    Crystal structure solution of a high-pressure polymorph of scintillating MgMoO4 and its electronic structure

    Get PDF
    The structure of the potentially scintillating high-pressure phase of [Beta] - MgMoO 4 ( γ - MgMoO 4 ) has been solved by means of high-pressure single-crystal x-ray diffraction. The phase transition occurs above 1.5 GPa and involves an increase of the Mo coordination from fourfold to sixfold accommodated by a rotation of the polyhedra and a concommitant bond stretching resulting in an enlargement of the c axis. A previous high-pressure Raman study had proposed such changes with a symmetry change to space group P 2 / c . Here it has been found that the phase transition is isosymmetrical ( C 2 / m -> C 2 / m ). The bulk moduli and the compressibilities of the crystal axes of both the low- and the high-pressure phase, have been obtained from equation of state fits to the pressure evolution of the unit-cell parameters which were obtained from powder x-ray diffraction up to 12 GPa. The compaction of the crystal structure at the phase transition involves a doubling of the bulk modulus B 0 changing from 60.3(1) to 123.7(8) GPa and a change of the most compressible crystal axis from the (0, b , 0) direction in [Beta] - MgMoO 4 to the ( 0.9 a , 0, 0.5 a ) direction in γ - MgMoO 4 . The lattice dynamical calculations performed here on γ - MgMoO 4 served to explain the Raman spectra observed for the high-pressure phase of [Beta] - MgMoO 4 in a previous work demonstrating that the use of internal modes arguments in which the MoO n polyhedra are considered as separate vibrational units fails at least in this molybdate. The electronic structure of γ - MgMoO 4 was also calculated and compared with the electronic structures of [Beta] - MgMoO 4 and MgWO 4 shedding some light on why MgWO 4 is a much better scintillator than any of the phases of MgMoO 4 . These calculations yielded for γ - MgMoO 4 a Y 2 Γ -> Γ indirect band gap of 3.01 eV in contrast to the direct bandgaps of [Beta] - MgMoO 4 (3.58 eV at Γ ) and MgWO 4 (3.32 eV at Z ).The authors thank I. Collings and M. Handfland from the ID15B beamline at the ESRF for their help during the experiments, and O. Gomis from the Universitat Politècnica de València for the discussions. Most of the work presented in this work benefited from the financial support from the Spanish Ministerio de Ciencia e Innovación (MICINN) under Projects No. PID2019- 106383GB-C41/43 (MCIN/AEI/10.13039/501100011033), MALTA Consolider-Team network RED2018-102612- T (MINECO/AEI/10.13039/501100003329), and from the Generalitat Valenciana under Project PROMETEO/2018/123. V.M. also thanks the MICINN for the Beatriz Galindo distinguished researcher program (BG20/00077)

    Magma emission rates fromshallow submarine eruptions using airborne thermal imaging

    Get PDF
    The effusion rate is the most important parameter to gatherwhen a volcanic eruption occurs, because it controls the way inwhich a lava body grows, extends and expands, influencing its dimensional properties. Calculation of lava flow volume from thermal images collected by helicopter surveys has been largely used during the last decade for monitoring subaerial effusive eruptions. However, due to the depths where volcanic activity occurs, monitoring submarine volcanic eruptions is a very difficult task. The 2011–2012 submarine volcanic eruption at El Hierro, Canary Islands, has provided a unique and excellent opportunity to monitor eruptive processes occurring on the seabed. The use of a hand-held thermal camera during daily helicopter flights allowed us to estimate for the first time the daily and total erupted magma volumes from a submarine eruption. The volume of magma emitted during this eruption has been estimated at 300 Mm3, giving an average effusion rate of ~25 m3 s−1. Thermal imagery by helicopter proved to be a fast, inexpensive, safe and reliable technique of monitoring volcanic eruptions when they occur on the shallow seabed.This research was financially supported by the projects MAKAVOL (MAC/3/C161) from the European Union MAC 2007–2013 Transnational Cooperation Program as well as from the Cabildo Insular de Tenerife. We are also grateful to the staff of El Hierro airport (AENA) for providing logistical support.Published219-2255V. Sorveglianza vulcanica ed emergenzeJCR Journalrestricte

    Reduction of a symplectic-like Lie algebroid with momentum map and its application to fiberwise linear Poisson structures

    Full text link
    This article addresses the problem of developing an extension of the Marsden- Weinstein reduction process to symplectic Lie algebroids, and in particular to the case of the symplectic cover of a fiberwise linear Poisson structure, whose reduction process is the analogue to cotangent bundle reduction in the context of Lie algebroids.Comment: 36 page

    Electrodepósito de níquel negro sobre aletas de cobre para aplicaciones en colectores solares planos

    Get PDF
    CIES2020 - XVII Congresso Ibérico e XIII Congresso Ibero-americano de Energia SolarRESUMEN: En este trabajo se reporta el desempeño de colectores solares construidos con aletas de cobre recubiertas con níquel/níquel negro con y sin SiO2. Los recubrimientos de níquel y níquel negro fueron obtenidos mediante electrodepósito y la capa de SiO2 por sol-gel y roció pirolítico, los resultados se comparan con un colector construido con un recubrimiento selectivo comercial TiNOX. Los resultados muestran que el níquel negro con SiO2 tiene una curva de desempeño cercana al colector construidos con el recubrimiento comercial. El recubrimiento de níquel negro con SiO2 fue obtenido por técnicas de bajo costo lo cual pudiera ser atractivo para las empresas dedicadas a la construcción de colectores solares.ABSTRACT: This work reports the performance of solar collectors built with nickel / black nickel coated copper fins with and without SiO2. The nickel and black nickel coatings were obtained by electrodeposition, the SiO2 layer by sol-gel and spray pyrolysis methods, the results are compared with a collector built with a commercial selective coating TiNOX. The results show that black nickel with SiO2 have a near performance curve than the collector built with the commercial coating. The black nickel coating with SiO2 was obtained by low cost techniques which could be attractive for companies dedicated to the construction of solar collectors.info:eu-repo/semantics/publishedVersio

    A candidate super-Earth planet orbiting near the snow line of Barnard’s star

    Get PDF
    Barnard’s star is a red dwarf, and has the largest proper motion (apparent motion across the sky) of all known stars. At a distance of 1.8 parsecs, it is the closest single star to the Sun; only the three stars in the α Centauri system are closer. Barnard’s star is also among the least magnetically active red dwarfs known and has an estimated age older than the Solar System. Its properties make it a prime target for planetary searches; various techniques with different sensitivity limits have been used previously, including radial-velocity imaging, astrometry and direct imaging, but all ultimately led to negative or null results. Here we combine numerous measurements from high-precision radial-velocity instruments, revealing the presence of a low-amplitude periodic signal with a period of 233 days. Independent photometric and spectroscopic monitoring, as well as an analysis of instrumental systematic effects, suggest that this signal is best explained as arising from a planetary companion. The candidate planet around Barnard’s star is a cold super-Earth, with a minimum mass of 3.2 times that of Earth, orbiting near its snow line (the minimum distance from the star at which volatile compounds could condense). The combination of all radial-velocity datasets spanning 20 years of measurements additionally reveals a long-term modulation that could arise from a stellar magnetic-activity cycle or from a more distant planetary object. Because of its proximity to the Sun, the candidate planet has a maximum angular separation of 220 milliarcseconds from Barnard’s star, making it an excellent target for direct imaging and astrometric observations in the future. © 2018, Springer Nature Limited.The results are based on observations made with the CARMENES instrument at the 3.5-m telescope of the Centro Astronomico Hispano-Aleman de Calar Alto (CAHA, Almeria, Spain), funded by the German Max-Planck-Gesellschaft (MPG), the Spanish Consejo Superior de Investigaciones Cientificas (CSIC), the European Union and the CARMENES Consortium members; the 90-cm telescope at the Sierra Nevada Observatory (Granada, Spain) and the 40-cm robotic telescope at the SPACEOBS observatory (San Pedro de Atacama, Chile), both operated by the Instituto de Astrofisica de Andalucia (IAA); and the 80-cm Joan Oro Telescope (TJO) of the Montsec Astronomical Observatory (OAdM), owned by the Generalitat de Catalunya and operated by the Institute of Space Studies of Catalonia (IEEC). This research was supported by the following institutions, grants and fellowships: Spanish MINECO ESP2016-80435-C2-1-R, ESP2016-80435-C2-2-R, AYA2016-79425-C3-1-P, AYA2016-79245-C3-2-P, AYA2016-79425-C3-3-P, AYA2015-69350-C3-2-P, ESP2014-54362-P, AYA2014-56359-P, RYC-2013-14875; Generalitat de Catalunya/CERCA programme; Fondo Europeo de Desarrollo Regional (FEDER); German Science Foundation (DFG) Research Unit FOR2544, project JE 701/3-1; STFC Consolidated Grants ST/P000584/1, ST/P000592/1, ST/M001008/1; NSF AST-0307493; Queen Mary University of London Scholarship; Perren foundation grant; CONICYT-FONDECYT 1161218, 3180405; Swiss National Science Foundation (SNSF); Koshland Foundation and McDonald-Leapman grant; and NASA Hubble Fellowship grant HST-HF2-51399.001. J.T. is a Hubble Fellow

    Waste-derived Materials: Opportunities in Photocatalysis

    No full text
    Waste-derived materials have been gaining increased attention in recent years due to their great potential and environmentally friendly nature. Several contributions in the literature have covered the advances achieved so far in this area. Nonetheless, to the best of our knowledge, no review has been dedicated specifically to waste-derived or templated photocatalytic materials. Both photocatalysis and (bio)waste-inspired design yield materials of a remarkably green nature. Therefore, the partnership between them may open promising possibilities for both waste valorization and photocatalytic processes, which in turn will lead to sustainable development globally, with the potential for full utilization of renewable energy sources such as biomass and sunlight. Several photocatalytic waste-derived materials, synthetic procedures, and applications will be described throughout this work, including waste-derived/templated TiO2, ZnO, and metal sulfide materials. Special attention will be given to biomass-inspired carbonaceous materials, including carbon quantum dots and graphitic carbon nitride (g-C3N4). © 2019, Springer Nature Switzerland AG

    Alternative Perovskites for Photovoltaics

    No full text
    The discovery of unique optoelectronic properties of 3D ABX3 perovskites has produced a great impact on the field of photovoltaics. In the initial years after the breakthrough, interest has focused on a limited number of 3D ABX3 perovskite materials, including the archetypal CH3NH3PbI3 and its counterparts. Undoubtedly, the main limitation of perovskite devices is their low stability due the fast degradation of the perovskite layer; however, the high toxicity of Pb also poses a concern. Herein, the recent increasing number of articles reporting the theoretical modeling, synthesis, optoelectronic characterization, and implementation of alternative perovskite materials in solar devices is summarized. The extensive variety of perovskite derivatives is classified according to the material dimensionality and the crystal structure. The particular strengths and weaknesses for each novel material are discussed, and the device performance and potential stability enhancements are also highlighted. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinhei

    Simplifying levulinic acid conversion towards a sustainable biomass valorisation

    No full text
    The demand for sustainable and robust catalysts for the valorisation of biomass is strictly related to the more and more pressing request to not only replace petroleum fuels with eco-friendly alternatives, but also to produce added value chemicals. In this context, the use of noble metals is not practically and economically sustainable and more abundant and stable alternatives are needed. In this contribution we have prepared and tested metal transition based catalysts (namely Ni3N and Ni nanoparticles) for the hydroconversion of levulinic acid (LA) as a model reaction. LA is useful also to produce valuable N-substituted pyrrolidones. Nanoparticles were prepared via a greener synthesis, using urea and metal salts, and have an average diameter of ∼30 nm (as ascertained by XRD and TEM studies). The main product of the levulinic acid hydroconversion was 1-ethyl-5-methylpyrrolidin-2-one. While this product was always the preferred one when Ni was used, Ni3N favoured the formation of the main product only in a shorter reaction time (below 1 h) with very high selectivity (up to 55% conversion), while a secondary product was formed in a longer time. The stability of the catalysts was also tested. To the best of our knowledge this is the first time that such a reaction is tested using transition metals and metal nitrides, with very promising results. © 2020 The Royal Society of Chemistry
    corecore