27 research outputs found

    Laser-writing of ring-shaped waveguides in BGO crystal for telecommunication band

    Get PDF
    We report on the fabrication of ring-shaped waveguides operating at the telecommunication band in a cubic Bi4Ge3O12 (BGO) crystal by using technique of femtosecond laser writing. In the regions of laser written tracks in BGO crystal, positive refractive index is induced, resulting in so-called Type I configuration. The modal profiles are within the designed track cladding with ring-shaped geometries, which are analogous to circular optical lattices. The homogenous guidance along both TE and TM polarizations has been obtained at telecommunication wavelength of 1.55 μm. Both straight and S-curved waveguiding structures have been produced with ring-shaped configurations. This work paves the way to fabricate complex photonic networks for telecommunications by using ring-shaped waveguides in compact chips.National Natural Science Foundation of China (NSFC) (61775120); Junta de Castilla y León (Project SA046U16); Spanish Ministerio de Economía y Competitividad (MINECO, FIS2013-44174-P, FIS2015-71933-REDT)

    Laterally-resolved mechanical and tribological properties of laser-structured polymer nanocomposites

    Get PDF
    [EN]In this work, we report on a detailed quantitative nanomechanical mapping of free-standing films of poly(ethylene terephthalate) (PET) and the composite PET/expanded graphite (EG) with 0.4% in weight of the nanoadditive, and of these materials nanostructured by laser irradiation. By using atomic force microscopy, we obtained simultaneously the topography, surface elastic modulus and adhesion force maps of the materials. Young's modulus images exhibited higher values for the composite in comparison to those of the neat polymer and for the nanostructured films in contrast to the non-nanostructured ones. Additionally, we explored the tribological properties of these systems at the nanoscale. Using lateral force microscopy, we observed a decrease in the friction coefficient for the nanocomposite as compared to the neat polymer, while quantifying an increase for both laser-structured samples. Our results are discussed taking into consideration the possible changes that the samples might undergo during processing, as well as the changes imposed by the complex geometry of the nanometric features in these laterally-resolved mechanical measurements

    Nanoestructurado de composites de matriz polimérica y aditivos de base carbono con láseres pulsados de nano-y femtoseguntos

    Get PDF
    [EN]In this work, formation of LIPSS (Laser Induced Periodic Surface Structures) on the surfaces of free standing and thin films of polymer and polymer based composites supported on silicon, glass, iron and poly (ethylene terephthalate) PET, was studied. The species investigated were PET, PET/EG (Expanded Graphite), poly (trimethylene terephthalate) PTT, PTT/SWCNT (Single Wall Carbon Nanotubes), PTT/EG + SWCNT, the copolymer poly (trimethylene terephthalate) - poly (tetramethylene oxide) PTT-PTMO and PTT-PTMO/SiC (Silicon Carbide). Laser irradiation was carried out by means of ultraviolet nanosecond laser pulses (266 nm, 8 ns, 10 Hz) on free standing samples, and ultraviolet (265 nm, 260 fs, 1 kHz) and near infrared (795 nm, 120 fs, 1 kHz) femtosecond laser pulses, on both free standing and thin films. Low Spatial Frequency LIPSS (LSFL) were induced in all materials upon irradiation with ultraviolet nanosecond and femtosecond pulses. In the case of UV femtosecond pulses, the structures appear in both free standing and thin films (all the substrates). Furthermore, laser irradiation with near infrared femtosecond pulses lead to the generation of LSFL when the polymers and composites are deposited on silicon and, LSFL and High Spatial Frequency LIPSS (HSFL) when the substrate is glass. For the rest of the samples, formation of nanostructures was not reported. Topography of the irradiated samples reveals that the formation of good quality LIPSS depends strongly on the parameters of irradiation (fluence and number of pulses). In all cases, LSFL have a period close to the irradiation wavelength and were formed parallel to the polarization of the laser beam. Moreover, HSFL exhibit a period much smaller than the irradiation wavelength (~ 100 nm) and were perpendicular to the polarization vector. In order to monitor the modification of the physicochemical properties of the surfaces after irradiation, some analytical techniques were performed in both irradiated and non-irradiated samples. Raman spectroscopy was useful to account for possible chemical modifications in the materials after irradiation. Important changes were not found in Raman spectra of the surfaces after irradiation in comparison to those of non-irradiated samples. Contact angle measurements were carried out using different reference liquids (water, glycerol and paraffin oil) to measure the wettability and the solid surface free energies. In all cases, the samples became more hydrophilic after ultraviolet irradiation (nanosecond nd femtosecond pulses). On other hand, the samples evolve to a more hydrophobic state under near infrared femtosecond laser irradiation. The values of the surface free energy components showed remarkable changes after nanostructuring, mainly, in the polarity of the surface energy. Additionally, adhesion measurements were performed by using the colloidal probe technique in order to characterize the surface forces in the micrometer range. When irradiated, force adhesion increased in some of the samples whereas it decreased for some others. Finally, nanomechanical properties were measured by the PeakForce Quantitative Nanomechanical Mapping method, obtaining maps of elastic modulus, mechanical adhesion resistance and deformation. In non-irradiated samples, PET/EG 0.4 wt. % had an elastic modulus higher than the undoped polymer matrix. For PTT and its composites, the changes from one material to each other were negligible. The measurements were affected by the abrupt surface topography in the case of the copolymer and its composite. The adhesion force and the deformation did not show significant differences between polymers and their composites. After irradiation, it was found that the nanomechanical properties were always modulated by the LIPSS topography. At the top and bottom of the nanostructures, an increment of the elastic modulus was observed. In the presence of LIPSS, the adhesion force exhibited either a decrement or remain unchanged with regard to the raw polymer or composite. Finally, nanostructuring did not lead to significant changes in the magnitude of the deformation of the materials.[ES]En este trabajo de tesis doctoral se estudió la formación de estructuras superficiales periódicas inducidas por láser (LIPSS, siglas del inglés Laser Induced Periodic Surface Structures) en polímeros y compuestos de matriz polimérica en forma de películas delgadas, autosoportadas y soportadas en diferentes sustratos, como son silicio, vidrio, hierro y poli (etilén tereftalato) (PET). Los polímeros y compuestos estudiados son PET, PET/EG (Grafito Expandido, de las siglas en inglés de Expanded Graphite), poli (trimetilén tereftalato) (PTT), PTT/SWCNT (Nanotubos de carbono de pared simple, de las siglas en inglés de Single Wall Carbon Nanotubes), PTT/EG + SWCNT, el copolímero poli (trimetilén tereftalato) - poli (óxido de tetrametileno) (PTT-PTMO) y PTT-PTMO/SiC (Carburo de Silicio). La irradiación láser se llevó a cabo usando pulsos láser de nanosegundos en el ultravioleta (266 nm, 8 ns, 10 Hz), en muestras autosoportadas, y pulsos láser de femtosegundos en el ultravioleta (265 nm, 260 fs, 1 kHz) e infrarrojo (795 nm, 120 fs, 1 kHz), en películas tanto autosoportadas como soportadas. La irradiación con pulsos de nanosegundos y femtosegundos en el ultravioleta indujo la formación de LIPSS de baja frecuencia espacial (LSFL, de las siglas en inglés de Low Spatial Frequency LIPSS) en todos los materiales. Específicamente, en el caso de irradiación con femtosegundos a esta longitud de onda, los cambios se produjeron en ambos tipos de muestras, películas autosoportadas y soportadas en los distintos sustratos. Por otro lado, la irradiación con pulsos de infrarrojo de femtosegundos dio lugar a LSFL en los materiales depositados sobre sustrato de silicio y, a LSFL y LIPSS de alta frecuencia espacial (HFSL, de las siglas en inglés de High Spatial Frequency LIPSS), en los materiales depositados sobre vidrio. Para las muestras autosoportadas y el resto de muestras depositadas, no se observó la formación de estructuras periódicas. La caracterización topográfica revela que la dinámica de formación de LIPSS depende de los parámetros de irradiación (fluencia y número de pulsos). En todos los casos, las LFSL tienen un periodo cercano a la longitud de onda y están alineadas paralelamente al vector de polarización del haz incidente. Por otra parte, las HFSL presentan un periodo mucho menor a la longitud de onda (~ 100 nm) y se formaron perpendicularmente a la dirección de polarización. Una posterior caracterización se llevó a cabo mediante diferentes técnicas analíticas con el fin de determinar cambios en las propiedades fisicoquímicas de las muestras. La espectroscopia Raman sirvió para monitorizar las modificaciones químicas en las superficies tras la irradiación láser. No se encontraron cambios significativos entre los espectros Raman de las muestras sin irradiar y los de las superficies irradiadas. Se realizaron medidas de ángulo de contacto, usando diferentes líquidos de prueba (agua, glicerol y aceite de parafina), para determinar tanto la mojabilidad como las energías libres superficiales de las muestras. En todos los casos, las muestras se volvieron más hidrófilas con la irradiación con pulsos con longitudes de onda en el ultravioleta (nanosegundos y femtosegundos). Por otra parte, las superficies se tornaron más hidrófobas bajo irradiación de femtosegundos en el infrarrojo. Los valores calculados para los componentes de la energía libre superficial mostraron importantes cambios tras el nanoestructurado, sobre todo en las componentes polares. Adicionalmente, se llevaron a cabo mediciones de la adhesión usando la técnica de la punta coloidal en el rango micrométrico. En presencia de LIPSS, se observaron diferentes tendencias, de forma que mientras que en algunos casos la magnitud de la fuerza de adhesión aumentó, en otros disminuyó. Finalmente, se evaluaron las propiedades nanomecánicas mediante la técnica de mapeo cuantitativo en AFM. Se obtuvieron distribuciones del módulo elástico, la fuerza de adhesión y la deformación en muestras irradiadas y sin irradiar. En muestras no irradiadas, hubo un aumento del módulo elástico en PET/EG 0.4 wt. % con respecto a su matriz sin dopar. En el caso del PTT y sus compuestos, no se obtuvieron variaciones importantes de un material a otro. Para el copolímero y su compuesto, las mediciones se vieron afectadas por la topografía abrupta de las superficies. En cuanto a la fuerza de adhesión y la deformación, no se presentaron diferencias significativas entre las matrices poliméricas sin dopar y sus compuestos. Tras la irradiación se encontró, en todos los casos, que las propiedades nanomecánicas están moduladas por la topografía de las estructuras generadas. Un posterior análisis en las crestas y valles de las estructuras mostró un incremento en los valores del módulo elástico para materiales nanoestructurados. Para la fuerza de adhesión, o disminuye el valor o se mantiene constante. Por último, los valores de la deformación no presentaron cambios importantes tras el nanoestructurado láser

    LIPSS formation by nanosecond laser irradiation of poly(ethylene terephthalate) reinforced with expanded graphite

    Get PDF
    XIV Congreso Nacional de Materiales; Gijón (España); 8, 9 y 10 de junio 2016The formation of Laser Induced Periodic Surface Structures (LIPSS) has demonstrated to be useful to structure in the nanoscale many types of materials including polymers . This technique requires the irradiation of the surface of the sample with polarized laser pulses at fluences below the ablation threshold. The formation of LIPSS can be explained as a modulation of the depth of the surface resulting from an inhomogeneous intensity distribution, due to the interference between the incoming and the surface-scattered waves, and a positive feedback process. This leads to the formation of structures with a spatial period close to the laser wavelength, aligned parallel to the polarization of the laser beam. Expanded Graphite (EG) is becoming a common reinforcement agent in polymers in order to improve substantially some of their properties, for instance, mechanical resistance or electrical conductivity. Poly(ethylene terephthalate) (PET) is a widely used polymer because of its excellent mechanical and chemical properties, and on the other hand, since it allows homogenous and simple dispersion of carbon based fillersPeer Reviewe

    Laser-Induced Periodic Surface Structuring of Poly(trimethylene terephthalate) Films Containing Tungsten Disulfide Nanotubes

    Get PDF
    © 2020 by the authors.We report the study of the formation of Laser Induced Periodic Surface Structures (LIPSS), with UV femtosecond laser pulses (λ = 265 nm), in free-standing films of both Poly(trimethylene terephthalate) (PTT) and the composite PTT/tungsten disulfide inorganic nanotubes (PTT-WS2). We characterized the range of fluences and number of pulses necessary to induce LIPSS formation and measured the topography of the samples by Atomic Force Microscopy, the change in surface energy and contact angle using the sessile drop technique, and the modification in both Young’s modulus and adhesion force values with Peak Force-Quantitative Nanomechanical Mapping. LIPSS appeared parallel to the laser polarization with a period close to its wavelength in a narrow fluence and number of pulses regime, with PTT-WS2 needing slightly larger fluence than raw PTT due to its higher crystallinity and heat diffusion. Little change was found in the total surface energy of the samples, but there was a radical increase in the negative polar component (γ−). Besides, we measured small variations in the samples Young’s modulus after LIPSS formation whereas adhesion is reduced by a factor of four. This reduction, as well as the increase in γ−, is a result of the modification of the surface chemistry, in particular a slight oxidation, during irradiation.This work has been supported by the Spanish Ministry of Science and Innovation by the projects MAT2015-66443-C02-1-R (MINECO/FEDER, UE), CTQ2016-75880-P (AEI/FEDER, UE) and FIS2017-87970-R. J.P.-R and P.M. acknowledge support from Junta de Castilla y León (Project SA287P18). J.P.-R thanks the Spanish Ministry of Universities for the FPU grant with reference: FPU17/01859.Peer reviewe

    Femtosecond laser fabrication of periodic nanostructures on polymers and on their composites with carbon nanoadditives

    No full text
    Conferencia invitada. -- USTS 2017, Salamanca, November 22nd to 24th, 2017. -- https://www.ultrafast.es/USTS2017Peer Reviewe

    Laser-Induced Periodic Surface Structuring of Poly(trimethylene terephthalate) Films Containing Tungsten Disulfide Nanotubes

    Get PDF
    We report the study of the formation of Laser Induced Periodic Surface Structures (LIPSS), with UV femtosecond laser pulses (λ = 265 nm), in free-standing films of both Poly(trimethylene terephthalate) (PTT) and the composite PTT/tungsten disulfide inorganic nanotubes (PTT-WS2). We characterized the range of fluences and number of pulses necessary to induce LIPSS formation and measured the topography of the samples by Atomic Force Microscopy, the change in surface energy and contact angle using the sessile drop technique, and the modification in both Young’s modulus and adhesion force values with Peak Force-Quantitative Nanomechanical Mapping. LIPSS appeared parallel to the laser polarization with a period close to its wavelength in a narrow fluence and number of pulses regime, with PTT-WS2 needing slightly larger fluence than raw PTT due to its higher crystallinity and heat diffusion. Little change was found in the total surface energy of the samples, but there was a radical increase in the negative polar component (γ−). Besides, we measured small variations in the samples Young’s modulus after LIPSS formation whereas adhesion is reduced by a factor of four. This reduction, as well as the increase in γ−, is a result of the modification of the surface chemistry, in particular a slight oxidation, during irradiatioThis work has been supported by the Spanish Ministry of Science and Innovation by the projects MAT2015-66443-C02-1-R (MINECO/FEDER, UE), CTQ2016-75880-P (AEI/FEDER, UE) and FIS2017-87970-R. J.P.-R and P.M. acknowledge support from Junta de Castilla y León (Project SA287P18). J.P.-R thanks the Spanish Ministry of Universities for the FPU grant with reference: FPU17/01859

    LIPSS formation by nanosecond laser irradiation of Poly(ethylene terephthalate) and Poly(trimethylene terephthalate) reinforced with carbon-based fillers

    Get PDF
    XII Jornadas de Procesado de Materiales con Láser AIMEN; O Porriño (Pontevedra); 29 y 30 de septiembre de 2016The formation of Laser Induced Periodic Surface Structures (LIPSS) is a process commonly used to nanostructure polymer surfaces. Forming of LIPSS is possible because of the irradiation of the polymer surface with polarized laser pulses at fluences below the ablation threshold. This leads to a modulation of the depth of the surface, resulting from an inhomogeneous intensity distribution, due to the interference between the incoming and the surface-scattered waves, reinforced with a positive feedback process. Such structures have a spatial period close to the laser wavelength, aligned parallel to the polarization of the laser beamPeer Reviewe

    Zr-Based Biocomposite Materials as an Alternative for Fluoride Removal, Preparation and Characteristics

    No full text
    The development of biocomposite materials used as adsorbents to remove ions in aqueous media has become an attractive option. The biomasses (base materials) are chemically treated and impregnated with metal cations, becoming competitive for fluoride-capture capacity. In this research, Valence orange (Citrus sinensis) and Red Delicious apple (Malus Domestica) peels were modified by alkaline treatment, carboxylation, and impregnation with zirconium (Zr). These materials were characterized morphologically and structurally to understand the modifications in the treated biomasses and the mechanism of fluoride adsorption. The results show changes in surface area and composition, most notably, an increment in roughness and Zr impregnation of the bioadsorbents. After batch experimentation, the maximum capacity of the materials was determined to be 4.854 and 5.627 mg/g for the orange and apple peel bioadsorbent, respectively, at pH 3.5. The experimental data fitted the Langmuir model, suggesting that chemisorption occurs in monolayers. Finally, the characterization of the bioadsorbents in contact with fluoride allowed the replacement of OH species by fluoride or the formation of hydrogen bonds between them as an adsorption mechanism. Therefore, these bioadsorbents are considered viable and can be studied in a continuous system

    Influence of film thickness and substrate roughness on the formation of laser induced periodic surface structures in poly(ethylene terephthalate) films deposited over gold substrates

    No full text
    10 pags., 10 figs., 4 tabs.A study of the formation of Laser Induced Periodic Surface Structures (LIPSS) using near-infrared femtosecond pulsed laser irradiation on poly(ethylene terephthalate) (PET) films deposited over gold substrates has been carried out. We report the influence of the gold substrate roughness and the PET film thickness on LIPSS formation and analyze it in terms of the features of the electric field distribution obtained by computer simulations using COMSOLTM. We obtain LIPSS with periods close to the irradiation wavelength as long as the aforementioned substrate and film parameters remain below certain threshold values, in particular for polymer thicknesses below 200 nm and substrate roughness of few nm. However, experiments show the impossibility of LIPSS formation for rough substrates as well as thick films above these threshold values. In our numerical simulations, we notice the generation of Surface Plasmon Polariton (SPP) in the film-substrate interface that gives rise to a periodical field pattern on the surface of the thin film. This periodicity is broken for a certain level of substrate roughness or film thickness. Moreover, the evolution of the period of the SPP as the substrate roughness and film thickness change for given laser parameters is qualitatively in good agreement with the experimental LIPSS period (below but close to the irradiation laser wavelength). In conclusion, the experimental findings are explained by the formation and behavior of SPP in the thin film-substrate interface. On these grounds, we propose that, for our case of study, this SPP formation and the subsequent inhomogeneous rise in temperature induced by the periodic field on the surface of the sample is the leading mechanism contributing to LIPSS formation.Funding: This work was supported by the Spanish State Research Agency (AEI), Spain [project numbers PID2020-119003GB-I00/MCIN/AEI/10.13039/501100011033, PID2019-107514GB-I00/AEI/10.13039/501100011033, and PID2019-106125GB-I00/AEI/10.13039/501100011033] and the Junta de Castilla y León, Spain [project number SA136P20]. J.P.-R. thanks the Spanish Ministry of Universities, Spain [grant number FPU17/01859].Peer reviewe
    corecore