3,656 research outputs found

    Myocardial trabeculation in embryos of Scyliorhinus canicula (Elasmobranchii, Chondrichthyans)

    Get PDF
    Currently, three types of ventricular myoarchitecture are recognized in vertebrates, namely compact, spongy (trabeculated) and mixed myocardium. Mixed myocardium, which has been recently proposed as the primitive condition in gnathostomes, is composed of two myocardial layers: an inner trabeculated and an outer compact one. The trabeculation process has been studied in teleosts, showing exclusively spongy myocardium, and mammals and birds, characterized by a compact myocardial ventricular wall. In zebrafish, mouse and chicken embryos, the trabeculae develop as luminal myocardial ridges protruding into the lumen. In mammals and birds, further compactation of trabeculae leads to the formation of a compact layer. The potential mechanisms that may contribute to the formation of the ridges are under discussion and include myocardial proliferation, endocardial invagination, and bending of the entire myocardial layer. However, no description of the development of the mixed myocardium is available. To shed some light on this issue, we have studied the heart development of an elasmobranch species with mixed myocardium, the lesser spotted dogfish (Scyliorhinus canicula; Chondrichthyes), by means of histological and immunohistochemical techniques for light microscopy, semithin sections, scanning electron microscopy and transmission electron microscopy. Our results suggest that in the dogfish the intertrabecular spaces develop by connections between early intramyocardial spaces and the lumen of the ventricle through invaginations of the endocardial line. Chondrichthyans are the earliest diverged lineage of gnathostomes and, consequently, they have the most primitive cardiac design. Although chicken, mouse, and recently zebrafish have been considered powerful vertebrate models to study heart development, we propose that the trabeculation process in the dogfish is representative of the early steps of the ventricular morphogenesis in vertebrates.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech.Study supported by grant CGL2017-85090-P and CGL2014-52356-P (Ministerio de Economía y Competitividad), FPU15/03209 (Ministerio de Educación, Cultura y Deporte), FEDER, and Universidad de Málaga

    The bulbus arteriosus of the holocephalan heart

    Get PDF
    El resumen aparece en el Program & Abstracts of the 10th International Congress of Vertebrate Morphology, Barcelona 2013.Anatomical Record, Volume 296, Special Feature — 1: P-074.Previous work has shown that the outflow tract of the elasmobranch heart, namely the cardiac portion intercalated between the ventricle and the ventral aorta, does not consist of a single component, the conus arteriosus, as has classically been assumed, but two, the myocardial conus arteriosus and the non-myocardial bulbus arteriosus. From the evolutionary perspective, knowledge of the anatomy of the cardiac outflow tract of the holocephali is important, as they are the sister group of elasmobranchs. Our aim is to describe the cardiac outflow tract of four holocephalan species, two of them, Chimaera monstrosa and Hydrolagus affinis of the family Chimaeridae, and the other two, Harriotta raleighana and Rhinochimaera atlantica, of the family Rhinochimaeridae. The cardiac outflow tract of the four species consisted of a myocardial conus arteriosus, furnished with valves, and a bulbus arteriosus devoid of cardiac muscle. Both the bulbus and conus are tubular in shape. The length of the bulbus relative to the total length of the outflow tract is somewhat smaller in the rhinochimaerids (15%-19%) than in the chimaerids (19%-23%). The bulbus is covered by epicardium and is crossed by the main coronary artery trunks. Histologically, the bulbus is mainly composed of elastin and collagen, and, to a lesser extent, by smooth muscle. This suggests that in holocephalans, the bulbus actively helps to protect the gill vasculature from exposure to high-pressure pulses of blood. Our results prove that the bulbus arteriosus is common to chondrichthyans. In addition, they support the hypothesis that the cardiac outflow tract consisted of a conus arteriosus and a bulbus arteriosus from the beginning of the jawed vertebrate radiation, contributing to our understanding of the morphological changes that have occurred at the arterial pole of the heart in both actinopterygians and sarcopterygians.Proyecto CGL2010-16417/BOS; Fondos FEDE

    MYOCARDIAL STRUCTURE AND VASCULARIZATION OF THE HEART VENTRICLE IN HOLOCEPHALI: IMPLICATIONS FOR HEART EVOLUTION

    Get PDF
    El resumen aparece en el Program & Abstracts of the 10th International Congress of Vertebrate Morphology, Barcelona 2013. Anatomical Record, Volume 296, Special Feature — 1: P-075.It has been classically assumed that the ventricle of the primitive vertebrate heart is composed of spongy myocardium, supplied exclusively by oxygen-poor, luminal blood. This idea is on two facts: (1) extant agnathans have a spongy ventricular myocardium, and (2) in avian and mammalian embryos, the formation of trabeculated myocardium precedes the appearance of compact myocardium. Recently, it has been proposed that, like elasmobranchs, the early gnathostomes possess a fully vascularised ventricle composed of mixed myocardium. We tested this idea by studying the structure and vascularisation of the ventricular myocardium in four holocephalan species of the families Chimaeridae and Rhinochimaeridae. Chimaera monstrosa, Hidrolagus affinis and Harriotta raleighana have a spongy myocardium covered by a thin layer of cardiac muscle. In H. raleighana, the compacta is reduced to an extremely fine rim. In all three species there is a well-developed coronary artery system consisting of subepicardial vessels which give off branches that penetrate the myocardial trabeculae. Rhinochimaera atlantica has no compacta and its ventricular coronary artery system is reduced to subepicardial vessels that do not enter the spongy layer. This report is the first to show that in wild living vertebrates, a coronary artery system supplying the whole myocardium exists in the absence of a well-developed compacta, which supports experimental work that shows that myocardial cell proliferation and coronary vascular growth rely on genetically separated programs. We conclude that the mixed ventricular myocardium is primitive for chondrichthyans, and that the lack of compacta in some holocephalans is a derived character. Moreover our results support the hypotheses that the mixed myocardium is the primitive condition in gnathostomes, and that the absence of a compacta in different actinopterygian taxa is the result of its repeated loss during evolution.Proyecto CGL2010-16417/BOS; Fondos FEDE

    Polymeric foams as the matrix of voltammetric sensors for the detection of catechol, hydroquinone, and their mixtures

    Get PDF
    Producción CientíficaPorous electrodes based on polymethylmethacrylate and graphite foams (PMMA_G_F) have been developed and characterized. Such devices have been successfully used as voltammetric sensors to analyze catechol, hydroquinone, and their mixtures. The presence of pores induces important changes in the oxidation/reduction mechanism of catechol and hydroquinone with respect to the sensing properties observed in nonfoamed PMMA_graphite electrodes (PMMA_G). The electropolymerization processes of catechol or hydroquinone at the electrode surface observed using PMMA_G do not occur at the surface of the foamed PMM_G_F. In addition, the limits of detection observed in foamed electrodes are one order of magnitude lower than the observed in the nonfoamed electrodes. Moreover, foamed electrodes can be used to detect simultaneously both isomers and a remarkable increase in the electrocatalytic properties shown by the foamed samples, produces a decrease in the oxidation potential peak of catechol in presence of hydroquinone, from +0.7 V to +0.3 V. Peak currents increased linearly with concentration of catechol in presence of hydroquinone over the range of 0.37·10−3 M to 1.69·10−3 M with a limit of detection (LOD) of 0.27 mM. These effects demonstrate the advantages obtained by increasing the active surface by means of porous structures.Ministerio de Economía, Industria y Competitividad - Fondo Europeo de Desarrollo Regional (project AGL2015-67482-R)Junta de Castilla y Leon - Fondo Europeo de Desarrollo Regional (project VA-011U16

    Effect of mold temperature on the impact behavior and morphology of injection molded foams based on polypropylene polyethylene–octene copolymer blends

    Get PDF
    Producción CientíficaIn this work, an isotactic polypropylene (PP) and a polyethylene–octene copolymer (POE) have been blended and injection-molded, obtaining solids and foamed samples with a relative density of 0.76. Different mold temperature and injection temperature were used. The Izod impact strength was measured. For solids, higher mold temperature increased the impact resistance, whereas in foams, the opposite trend was observed. In order to understand the reasons of this behavior, the morphology of the elastomeric phase, the crystalline morphology and the cellular structure have been studied. The presence of the elastomer near the skin in the case of high mold temperature can explain the improvement produced with a high mold temperature in solids. For foams, aspects as the elastomer coarsening in the core of the sample or the presence of a thicker solid skin are the critical parameters that justify the improved behavior of the materials produced with a lower mold temperature.Ministerio de Economía, Industria y Competitividad (grant DI-15-07952

    Anatomical, histochemical and immunohistochemical characterization of the outflow tract of ray hearts (Rajiformes; Chondrichthyes)

    Get PDF
    El resumen aparece en el Program & Abstracts of the 11th International Congress of Vertebrate Morphology, Washington DC 2016. Anatomical Record, Volume 299, Special Feature: 264.Recent work has shown that the cardiac outflow tract of sharks and chimaeras does not consist of a single myocardial component, the conus arteriosus, as classically accepted, but two, namely, the myocardial conus arteriosus and the non-myocardial bulbus arteriosus. However, the anatomical composition of the outflow tract of the batoid hearts remains unknown. The present study was designed to fill this gap. The material examined consisted of hearts of two species of rays, namely, the Mediterranean starry ray (Raja asterias) and sandy ray (Leucoraja circularis). They were studied using scanning electron microscopy, and histochemical and inmunohistochemical techniques. In both species, the outflow tract consists of two components, proximal and distal with regard to the ventricle. The proximal component is the conus arteriosus; it is characterized by the presence of compact myocardium in its wall and several transverse rows of pocket-shaped valves at its luminal side. Each valve consists of a leaflet and its supporting sinus. Histologically, the leaflet has two fibrosas, inner and outer, and a middle coat, the spongiosa. The distal component lacks myocardium. Its wall consists of smooth muscle cells, elastic fibers and collagen. Thus, it shows an arterial-like structure. However, it differs from the aorta because it is covered by the epicardium and crossed by coronary arteries. These findings indicate that the distal component is morphologically equivalent to the bulbus arteriosus of sharks and chimaeras. In contrast to foregoing descriptions, the valves of the first transverse row are distally anchored to the bulbus arteriosus and not to the ventral aorta. Our findings give added support to the notion that presence of a bulbus arteriosus at the arterial pole of the heart is common to all chondrichtyans, and not an apomorphy of actinopterygians as classically thought.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. CGL2014-52356-P, CEIMAR, BIO 203, FEDE

    A comparison between the soft X-ray and [O III] morphologies of active galactic nuclei

    Get PDF
    Several studies of nearby active galactic nuclei (AGN) have shown that the soft X-ray emission presents a size and morphology that resembles that of the narrow-line region (NLR) traced by [O III]. Since the NLR is mainly constituted by gas photoionised by the AGN, it seems logical to assume that this is also the primary source of the soft X-ray emission. However, these results are based on individual sources or small samples, particularly focused on type-2 Seyfert galaxies. Very little has been said concerning other types of AGN. The purpose of this work is to compare the circumnuclear morphologies of soft X-ray and [O III] images to test whether they match in different optical classes of AGN. Our sample is composed of 27 AGN: nine type-1 Seyferts, 10 type-2 Seyferts, and eight low ionisation nuclear emission-line regions (LINERs). We find a good match in 100% of the type-2 Seyferts in our sample. This correspondence is less frequent in type-1 Seyferts (22%) and it is not seen in LINERs. The good resemblance in type-2 Seyferts constitutes an evidence for a common physical origin. We argue that the lack of correspondence in type-1 Seyferts might be due to the line of sight perpendicular to the accretion disk. Based on the morphologies of the eight LINERs in our sample, we discard a common origin for the soft X-ray and [O III] emissions in these objects. Regarding the X-ray properties, both high column density and hard X-ray luminosity are associated with matched morphologies.Comment: Accepted by MNRAS. 20 pages, 9 figure

    Formation of S0 galaxies through mergers. Evolution in the Tully-Fisher relation since z1z\sim1

    Full text link
    (Abridged version) We explore whether a scenario that combines an origin by mergers at zz\sim1.8-1.5 with a subsequent passive evolution of the resulting S0 remnants since zz \sim0.8-1 is compatible with observational data of S0s in the Tully-Fisher relation (TFR). We studied a set of major and minor merger experiments from the GalMer database that generate massive S0 remnants. We analysed the location of these remnants in the photometric and stellar TFRs assuming that they correspond to z0.8z\sim0.8 galaxies. We then estimated their evolution in these planes over the last 7 Gyr. The results were compared with data of real S0s and spirals at different redshifts. We also tested how the use of Vcirc or Vrot,max affects the results. We found that just after \sim1-2 Gyr of coalescence, major mergers generate S0 remnants that are outliers of the local photometric and stellar TFRs at z0.8z\sim0.8. After \sim4-7 Gyr of passive evolution in isolation, the S0 remnants move towards the local TFR, although the initial scatter among them persists. This scatter is sensitive to the indicator used for the rotation velocity: Vcirc values yield a lower scatter than when Vrot,max values are considered instead. In the planes involving Vrot,max, a clear segregation of the S0 remnants in terms of the spin-orbit coupling of the model is observed, in which the remnants of retrograde encounters overlap with local S0s hosting counter-rotating discs. The location of the S0 remnants at z0z\sim 0 agrees well with the observed distribution of local S0 galaxies in the σ0\sigma_0-MKM_K, Vcirc-σ0\sigma_0 and Vrot,max-σ0\sigma_0 planes. Thus, massive S0 galaxies may have been formed through major mergers that occurred at high redshift and have later evolved towards the local TFR through passive evolution in relative isolation, a mechanism that would also contribute to the scatter observed in this relation.Comment: 19 pages, 15 figures. Accepted for publication in A&

    Foams with enhanced ductility and impact behavior based on polypropylene composites

    Get PDF
    Producción CientíficaIn this work, formulations based on composites of a linear polypropylene (L-PP), a long-chain branched polypropylene (LCB-PP), a polypropylene–graft–maleic anhydride (PP-MA), a styrene-ethylene-butylene-styrene copolymer (SEBS), glass fibers (GF), and halloysite nanotubes (HNT-QM) have been foamed by using the improved compression molding route (ICM), obtaining relative densities of about 0.62. The combination of the inclusion of elastomer and rigid phases with the use of the LCB-PP led to foams with a better cellular structure, an improved ductility, and considerable values of the elastic modulus. Consequently, the produced foams presented simultaneously an excellent impact performance and a high stiffness with respect to their corresponding solid counterparts.Unión Europea (Evolution project under grant 314744)Ministerio de Ciencia, Innovación y Universidades - Fondo Europeo de Desarrollo Regional (project RTI2018-098749-B-I00)Junta de Castilla y Leon (project VA275P18
    corecore