13 research outputs found

    Desarrollo de un metamaterial zurdo en el espectro visible basado en guías plasmónicas

    Full text link
    [ES] Esta tesina, tras una introducción teórica a los novedosos campos de los metamateriales y la plasmónica, describe los esfuerzos de investigación realizados por el autor para la ideación de un innovador metamaterial de índice negativo en el espectro visible con potencial para tener gran ancho de banda y carácter isotrópico. Se describe con detalle el proceso analítico de diseño y los resultados de las simulaciones electromagnéticas, así como las limitaciones que presenta la estructura ideada.[EN] This dissertation, after a theoretical introduction to the novel fields of metamaterials and plasmonics, describes the research efforts undergone by the author for the devise of an innovative negative index metamaterial in the visible spectrum, with potential to show a high bandwidth and an isotropic character. The analytical design process and the electromagnetic simulation results are described in detail, as well as the limitations presented by the conceived structure.Rodríguez Fortuño, FJ. (2009). Desarrollo de un metamaterial zurdo en el espectro visible basado en guías plasmónicas. http://hdl.handle.net/10251/27140.Archivo delegad

    Exploiting metamaterials, plasmonics and nanoantennas concepts in silicon photonics

    Get PDF
    [EN] The interaction of light with subwavelength metallic nano-structures is at the heart of different current scientific hot topics, namely plasmonics, metamaterials and nanoantennas. Research in these disciplines during the last decade has given rise to new, powerful concepts providing an unprecedented degree of control over light manipulation at the nanoscale. However, only recently have these concepts been used to increase the capabilities of light processing in current photonic integrated circuits (PICs), which traditionally rely only on dielectric materials with element sizes larger than the light wavelength. Amongst the different PIC platforms, silicon photonics is expected to become mainstream, since manufacturing using well-established CMOS processes enables the mass production of low-cost PICs. In this review we discuss the benefits of introducing recent concepts arisen from the fields of metamaterials, plasmonics and nanoantennas into a silicon photonics integrated platform. We review existing works in this direction and discuss how this hybrid approach can lead to the improvement of current PICs enabling novel and disruptive applications in photonics.AM and AE-S acknowledge funding from contracts TEC2014-51902-C2-1-R and TEC2014-61906-EXP (MINECO/FEDER, UE) and, FR-F acknowledges funding from EPSRC (UK).Rodríguez Fortuño, FJ.; Espinosa-Soria, A.; Martínez Abietar, AJ. (2016). Exploiting metamaterials, plasmonics and nanoantennas concepts in silicon photonics. Journal of Optics. 18(12):123001-1-123001-14. https://doi.org/10.1088/2040-8978/18/12/123001S123001-1123001-14181

    Procesado Cuántico de la Información : Apuntes

    Full text link
    Estos apuntes de Procesado Cuántico de la Información, escritos por Francisco José Rodríguez Fortuño, están basados en las clases y el material aportado por el Prof. Miguel Angel Muriel Fernández

    On-Chip Optimal Stokes Nanopolarimetry Based on Spin-Orbit Interaction of Light

    Get PDF
    [EN] Full measurement of the polarization of light at the nanoscale is expected to be crucial in many scientific and technological disciplines. Ideally, such measurements will require miniaturized Stokes polarimeters able to determine polarization nondestructively, locally, and in real time. For maximum robustness in measurement, the polarimeters should also operate optimally. Recent approaches making use of plasmonic nanostructures or metasurfaces are not able to fulfill all these requirements simultaneously. Here, we propose and demonstrate a method for subwavelength-footprint Stokes nanopolarimetry based on spin-orbit interaction of light. The method, which basically consists on a subwavelength scatterer coupled to a (set of) multimode waveguide(s), can fully determine the state of polarization satisfying all the previous features. Remarkably, the nanopolarimetry technique can operate optimally (we design a nanopolarimeter whose polarization basis spans 99.7% of the maximum tetrahedron volume inside the Poincaré sphere) over a broad bandwidth. Although here experimentally demonstrated on a silicon chip at telecom wavelengths, spin-orbit interaction-based nanopolarimetry is a universal concept to be applied in any wavelength regime or technological platform.A.M. acknowledges support from the Spanish Ministry of Economy and Competiveness (MINECO) under grant TEC2014-51902-C2-1-R and the Valencian Conselleria d'Educacion, Cultura i Esport under grant PROMETEOII/2014/034. FJ.R.-F. acknowledges support from the European Research Council under project ERC-2016-STG-714151-PSINFONI. A.E.-S. acknowledges support from the Spanish Ministry of Economy and Competiveness (MINECO) under grant BES-2015-073146.Espinosa Soria, A.; Rodríguez Fortuño, FJ.; Griol Barres, A.; Martínez Abietar, AJ. (2017). On-Chip Optimal Stokes Nanopolarimetry Based on Spin-Orbit Interaction of Light. Nano Letters. 17(5):3139-3144. https://doi.org/10.1021/acs.nanolett.7b00564S3139314417

    Near-Field Interference for the Unidirectional Excitation of Electromagnetic Guided Modes

    Full text link
    Wave interference is a fundamental manifestation of the superposition principle with numerous applications. Although in conventional optics, interference occurs between waves undergoing different phase advances during propagation, we show that the vectorial structure of the near field of an emitter is essential for controlling its radiation as it interferes with itself on interaction with a mediating object. We demonstrate that the near-field interference of a circularly polarized dipole results in the unidirectional excitation of guided electromagnetic modes in the near field, with no preferred far-field radiation direction. By mimicking the dipole with a single illuminated slit in a gold film, we measured unidirectional surface-plasmon excitation in a spatially symmetric structure. The surface wave direction is switchable with the polarization.This work has been supported in part by the Engineering and Physical Sciences Research Council (grant EP/H000917/2). F.J.R.-F. acknowledges support from grant FPI of Generalitat Valenciana. A. M. acknowledges financial support from the Spanish government (contracts Consolider EMET CSD2008-00066 and TEC2011-28664-C02-02). P. G. acknowledges the Royal Society for a Newton International Fellowship.Rodríguez Fortuño, FJ.; Marino, G.; Ginzburg, P.; O’connor, D.; Martínez Abietar, AJ.; Wurtz, GA.; Zayats, AV. (2013). Near-Field Interference for the Unidirectional Excitation of Electromagnetic Guided Modes. Science. 340(6130):328-330. https://doi.org/10.1126/science.1233739S3283303406130Yu, N., Genevet, P., Kats, M. A., Aieta, F., Tetienne, J.-P., Capasso, F., & Gaburro, Z. (2011). Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction. Science, 334(6054), 333-337. doi:10.1126/science.1210713Ni, X., Emani, N. K., Kildishev, A. V., Boltasseva, A., & Shalaev, V. M. (2011). Broadband Light Bending with Plasmonic Nanoantennas. Science, 335(6067), 427-427. doi:10.1126/science.1214686Merlin, R. (2007). Radiationless Electromagnetic Interference: Evanescent-Field Lenses and Perfect Focusing. Science, 317(5840), 927-929. doi:10.1126/science.1143884Pendry, J. B. (2000). Negative Refraction Makes a Perfect Lens. Physical Review Letters, 85(18), 3966-3969. doi:10.1103/physrevlett.85.3966Helseth, L. E. (2008). The almost perfect lens and focusing of evanescent waves. Optics Communications, 281(8), 1981-1985. doi:10.1016/j.optcom.2007.12.018Eleftheriades, G. V., & Wong, A. M. H. (2008). Holography-Inspired Screens for Sub-Wavelength Focusing in the Near Field. IEEE Microwave and Wireless Components Letters, 18(4), 236-238. doi:10.1109/lmwc.2008.918871Lee, J. Y., Hong, B. H., Kim, W. Y., Min, S. K., Kim, Y., Jouravlev, M. V., … Kim, K. S. (2009). Near-field focusing and magnification through self-assembled nanoscale spherical lenses. Nature, 460(7254), 498-501. doi:10.1038/nature08173Stockman, M. I., Faleev, S. V., & Bergman, D. J. (2002). Coherent Control of Femtosecond Energy Localization in Nanosystems. Physical Review Letters, 88(6). doi:10.1103/physrevlett.88.067402Aeschlimann, M., Bauer, M., Bayer, D., Brixner, T., Cunovic, S., Fischer, A., … Voronine, D. V. (2012). Optimal open-loop near-field control of plasmonic nanostructures. New Journal of Physics, 14(3), 033030. doi:10.1088/1367-2630/14/3/033030Sukharev, M., & Seideman, T. (2006). Phase and Polarization Control as a Route to Plasmonic Nanodevices. Nano Letters, 6(4), 715-719. doi:10.1021/nl0524896Barnes, W. L., Dereux, A., & Ebbesen, T. W. (2003). Surface plasmon subwavelength optics. Nature, 424(6950), 824-830. doi:10.1038/nature01937Schuller, J. A., Barnard, E. S., Cai, W., Jun, Y. C., White, J. S., & Brongersma, M. L. (2010). Plasmonics for extreme light concentration and manipulation. Nature Materials, 9(3), 193-204. doi:10.1038/nmat2630Kim, H., & Lee, B. (2009). Unidirectional Surface Plasmon Polariton Excitation on Single Slit with Oblique Backside Illumination. Plasmonics, 4(2), 153-159. doi:10.1007/s11468-009-9086-2Bonod, N., Popov, E., Li, L., & Chernov, B. (2007). Unidirectional excitation of surface plasmons by slanted gratings. Optics Express, 15(18), 11427. doi:10.1364/oe.15.011427Bouillard, J.-S., Vilain, S., Dickson, W., Wurtz, G. A., & Zayats, A. V. (2012). Broadband and broadangle SPP antennas based on plasmonic crystals with linear chirp. Scientific Reports, 2(1). doi:10.1038/srep00829Li, X., Tan, Q., Bai, B., & Jin, G. (2011). Experimental demonstration of tunable directional excitation of surface plasmon polaritons with a subwavelength metallic double slit. Applied Physics Letters, 98(25), 251109. doi:10.1063/1.3602322Radko, I. P., Bozhevolnyi, S. I., Brucoli, G., Martin-Moreno, L., Garcia-Vidal, F. J., & Boltasseva, A. (2009). Efficient unidirectional ridge excitation of surface plasmons. Optics Express, 17(9), 7228. doi:10.1364/oe.17.007228Liu, Y., Palomba, S., Park, Y., Zentgraf, T., Yin, X., & Zhang, X. (2012). Compact Magnetic Antennas for Directional Excitation of Surface Plasmons. Nano Letters, 12(9), 4853-4858. doi:10.1021/nl302339zCurto, A. G., Volpe, G., Taminiau, T. H., Kreuzer, M. P., Quidant, R., & van Hulst, N. F. (2010). Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna. Science, 329(5994), 930-933. doi:10.1126/science.1191922Laroche, M., Arnold, C., Marquier, F., Carminati, R., Greffet, J.-J., Collin, S., … Pelouard, J.-L. (2005). Highly directional radiation generated by a tungsten thermal source. Optics Letters, 30(19), 2623. doi:10.1364/ol.30.002623Roelkens, G., Vermeulen, D., Van Laere, F., Selvaraja, S., Scheerlinck, S., Taillaert, D., … Baets, R. (2010). Bridging the Gap Between Nanophotonic Waveguide Circuits and Single Mode Optical Fibers Using Diffractive Grating Structures. Journal of Nanoscience and Nanotechnology, 10(3), 1551-1562. doi:10.1166/jnn.2010.2031Hansen, W. N. (1968). Electric Fields Produced by the Propagation of Plane Coherent Electromagnetic Radiation in a Stratified Medium. Journal of the Optical Society of America, 58(3), 380. doi:10.1364/josa.58.000380Rotenberg, N., Spasenović, M., Krijger, T. L., le Feber, B., García de Abajo, F. J., & Kuipers, L. (2012). Plasmon Scattering from Single Subwavelength Holes. Physical Review Letters, 108(12). doi:10.1103/physrevlett.108.127402Ruan, Z., & Fan, S. (2010). Superscattering of Light from Subwavelength Nanostructures. Physical Review Letters, 105(1). doi:10.1103/physrevlett.105.01390

    Demonstration of near infrared gas sensing using gold nanodisks on functionalized silicon

    Get PDF
    This paper was published in OPTICS EXPRESS and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://dx.doi.org/10.1364/OE.19.007664. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law[EN] In this work, we demonstrate experimentally the use of an array of gold nanodisks on functionalized silicon for chemosensing purposes. The metallic nanostructures are designed to display a very strong plasmonic resonance in the infrared regime, which results in highly sensitive sensing. Unlike usual experiments which are based on the functionalization of the metal surface, we functionalized here the silicon substrate. This silicon surface was modified chemically by buildup of an organosilane self-assembled monolayer (SAM) containing isocyanate as functional group. These groups allow for an easy surface regeneration by simple heating, thanks to the thermally reversible interaction isocyanate-analyte, which allows the cyclic use of the sensor. The technique showed a high sensitivity to surface binding events in gas and allowed the surface regeneration by heating of the sensor at 150°C. A relative wavelength shift ¿¿max/¿0 = 0.027 was obtained when the saturation level was reached. © 2011 Optical Society of America.Financial support by the Spanish MICINN under contracts CONSOLIDER EMET (CSD2008-00066) and TEC2008-06871-C02-02 and European Commission FP7 under the FET-Open project TAILPHOX 233833 is gratefully acknowledged.Rodríguez Cantó, PJ.; Martínez Marco, ML.; Rodríguez Fortuño, FJ.; Tomás Navarro, B.; Ortuño Molinero, R.; Peransi Llopis, SM.; Martínez Abietar, AJ. (2011). Demonstration of near infrared gas sensing using gold nanodisks on functionalized silicon. Optics Express. 19(8):7664-7672. https://doi.org/10.1364/OE.19.00766476647672198Barnes, W. L., Dereux, A., & Ebbesen, T. W. (2003). Surface plasmon subwavelength optics. Nature, 424(6950), 824-830. doi:10.1038/nature01937Maier, S. A., Brongersma, M. L., Kik, P. G., Meltzer, S., Requicha, A. A. G., & Atwater, H. A. (2001). Plasmonics-A Route to Nanoscale Optical Devices. Advanced Materials, 13(19), 1501-1505. doi:10.1002/1521-4095(200110)13:193.0.co;2-zLink, S., & El-Sayed, M. A. (2003). OPTICALPROPERTIES ANDULTRAFASTDYNAMICS OFMETALLICNANOCRYSTALS. Annual Review of Physical Chemistry, 54(1), 331-366. doi:10.1146/annurev.physchem.54.011002.103759Willets, K. A., & Van Duyne, R. P. (2007). Localized Surface Plasmon Resonance Spectroscopy and Sensing. Annual Review of Physical Chemistry, 58(1), 267-297. doi:10.1146/annurev.physchem.58.032806.104607Anker, J. N., Hall, W. P., Lyandres, O., Shah, N. C., Zhao, J., & Van Duyne, R. P. (2008). Biosensing with plasmonic nanosensors. Nature Materials, 7(6), 442-453. doi:10.1038/nmat2162Zhao, J., Zhang, X., Yonzon, C. R., Haes, A. J., & Van Duyne, R. P. (2006). Localized surface plasmon resonance biosensors. Nanomedicine, 1(2), 219-228. doi:10.2217/17435889.1.2.219SHANKARAN, D., GOBI, K., & MIURA, N. (2007). Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest. Sensors and Actuators B: Chemical, 121(1), 158-177. doi:10.1016/j.snb.2006.09.014Miura, N., Ogata, K., Sakai, G., Uda, T., & Yamazoe, N. (1997). Detection of Morphine in ppb Range by Using SPR (Surface- Plasmon-Resonance) Immunosensor. Chemistry Letters, 26(8), 713-714. doi:10.1246/cl.1997.713Shankaran, D. R., Matsumoto, K., Toko, K., & Miura, N. (2006). Development and comparison of two immunoassays for the detection of 2,4,6-trinitrotoluene (TNT) based on surface plasmon resonance. Sensors and Actuators B: Chemical, 114(1), 71-79. doi:10.1016/j.snb.2005.04.013Cosnier, S. (1999). Biomolecule immobilization on electrode surfaces by entrapment or attachment to electrochemically polymerized films. A review. Biosensors and Bioelectronics, 14(5), 443-456. doi:10.1016/s0956-5663(99)00024-xLee, J. W., Sim, S. J., Cho, S. M., & Lee, J. (2005). Characterization of a self-assembled monolayer of thiol on a gold surface and the fabrication of a biosensor chip based on surface plasmon resonance for detecting anti-GAD antibody. Biosensors and Bioelectronics, 20(7), 1422-1427. doi:10.1016/j.bios.2004.04.017Mark, S. S., Sandhyarani, N., Zhu, C., Campagnolo, C., & Batt, C. A. (2004). Dendrimer-Functionalized Self-Assembled Monolayers as a Surface Plasmon Resonance Sensor Surface. Langmuir, 20(16), 6808-6817. doi:10.1021/la0495276Kato, K., Dooling, C. M., Shinbo, K., Richardson, T. H., Kaneko, F., Tregonning, R., … Hunter, C. A. (2002). Surface plasmon resonance properties and gas response in porphyrin Langmuir–Blodgett films. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 198-200, 811-816. doi:10.1016/s0927-7757(01)01006-8Senaratne, W., Andruzzi, L., & Ober, C. K. (2005). Self-Assembled Monolayers and Polymer Brushes in Biotechnology:  Current Applications and Future Perspectives. Biomacromolecules, 6(5), 2427-2448. doi:10.1021/bm050180aStewart, M. E., Anderton, C. R., Thompson, L. B., Maria, J., Gray, S. K., Rogers, J. A., & Nuzzo, R. G. (2008). Nanostructured Plasmonic Sensors. Chemical Reviews, 108(2), 494-521. doi:10.1021/cr068126nYin, L., Liu, Y., Ke, Z., & Yin, J. (2009). Preparation of a blocked isocyanate compound and its grafting onto styrene-b-(ethylene-co-1-butene)-b-styrene triblock copolymer. European Polymer Journal, 45(1), 191-198. doi:10.1016/j.eurpolymj.2008.10.016Suyama, K., Iriyama, H., Shirai, M., & Tsunooka, M. (2001). Curing Systems Using Photolysis of Carbomoyloxyimino Groups and Themally Regenerated Isocyanate Groups. Journal of Photopolymer Science and Technology, 14(2), 155-158. doi:10.2494/photopolymer.14.155Patskovsky, S., Kabashin, A. V., Meunier, M., & Luong, J. H. T. (2004). Near-infrared surface plasmon resonance sensing on a silicon platform. Sensors and Actuators B: Chemical, 97(2-3), 409-414. doi:10.1016/j.snb.2003.09.023Shelton, D. J., Peters, D. W., Sinclair, M. B., Brener, I., Warne, L. K., Basilio, L. I., … Boreman, G. D. (2010). Effect of thin silicon dioxide layers on resonant frequency in infrared metamaterials. Optics Express, 18(2), 1085. doi:10.1364/oe.18.001085Bhalla, V., Carrara, S., Stagni, C., & Samorì, B. (2010). Chip cleaning and regeneration for electrochemical sensor arrays. Thin Solid Films, 518(12), 3360-3366. doi:10.1016/j.tsf.2009.10.022Malinsky, M. D., Kelly, K. L., Schatz, G. C., & Van Duyne, R. P. (2001). Chain Length Dependence and Sensing Capabilities of the Localized Surface Plasmon Resonance of Silver Nanoparticles Chemically Modified with Alkanethiol Self-Assembled Monolayers. Journal of the American Chemical Society, 123(7), 1471-1482. doi:10.1021/ja003312aSpencer, M. J. S., & Nyberg, G. L. (2004). Adsorption of silane and methylsilane on gold surfaces. Surface Science, 573(2), 151-168. doi:10.1016/j.susc.2004.08.043Gradess, R., Abargues, R., Habbou, A., Canet-Ferrer, J., Pedrueza, E., Russell, A., … Martínez-Pastor, J. P. (2009). Localized surface plasmon resonance sensor based on Ag-PVA nanocomposite thin films. Journal of Materials Chemistry, 19(48), 9233. doi:10.1039/b910020bBrolo, A. G., Gordon, R., Leathem, B., & Kavanagh, K. L. (2004). Surface Plasmon Sensor Based on the Enhanced Light Transmission through Arrays of Nanoholes in Gold Films. Langmuir, 20(12), 4813-4815. doi:10.1021/la0493621MAURIZ, E., CALLE, A., MONTOYA, A., & LECHUGA, L. (2006). Determination of environmental organic pollutants with a portable optical immunosensor. Talanta, 69(2), 359-364. doi:10.1016/j.talanta.2005.09.049Yu, Q., Chen, S., Taylor, A. D., Homola, J., Hock, B., & Jiang, S. (2005). Detection of low-molecular-weight domoic acid using surface plasmon resonance sensor. Sensors and Actuators B: Chemical, 107(1), 193-201. doi:10.1016/j.snb.2004.10.064Cui, X. (2003). Real-time immunoassay of ferritin using surface plasmon resonance biosensor. Talanta, 60(1), 53-61. doi:10.1016/s0039-9140(03)00043-

    High order standing-wave plasmon resonances in silver u-shaped nanowires

    Full text link
    Optical measurements of the transmission spectra through nanofabricated planar arrays of silver u-shaped nanowires on a silicon substrate resonating at infrared frequencies are performed. Good agreement with the numerically simulated surface plasmon standing wave resonances supported by the structures is found. Such resonances exhibit field enhancement and are able to provide magnetic and electric responses when used as the unit cell of a metamaterial. The magnetic excitation of the resonators using oblique incidence is shown to be drastically reduced by the existence of a high index substrate such as silicon. © 2012 American Institute of Physics.We acknowledge financial support from the Spanish MICINN under Contracts CONSOLIDER EMET CSD2008-00066 and TEC2011-28664-C02-02. F. J. Rodriguez-Fortuno acknowledges financial support from Grant FPI of GV.Rodríguez Fortuño, FJ.; Ortuño Molinero, R.; García Meca, C.; Martí Sendra, J.; Martínez Abietar, AJ. (2012). High order standing-wave plasmon resonances in silver u-shaped nanowires. Journal of Applied Physics. 112:103104-103104. https://doi.org/10.1063/1.4759444S103104103104112Barnes, W. L., Dereux, A., & Ebbesen, T. W. (2003). Surface plasmon subwavelength optics. Nature, 424(6950), 824-830. doi:10.1038/nature01937Anker, J. N., Hall, W. P., Lyandres, O., Shah, N. C., Zhao, J., & Van Duyne, R. P. (2008). Biosensing with plasmonic nanosensors. Nature Materials, 7(6), 442-453. doi:10.1038/nmat2162Kawata, S., Inouye, Y., & Verma, P. (2009). Plasmonics for near-field nano-imaging and superlensing. Nature Photonics, 3(7), 388-394. doi:10.1038/nphoton.2009.111Willets, K. A., & Van Duyne, R. P. (2007). Localized Surface Plasmon Resonance Spectroscopy and Sensing. Annual Review of Physical Chemistry, 58(1), 267-297. doi:10.1146/annurev.physchem.58.032806.104607Enkrich, C., Wegener, M., Linden, S., Burger, S., Zschiedrich, L., Schmidt, F., … Soukoulis, C. M. (2005). Magnetic Metamaterials at Telecommunication and Visible Frequencies. Physical Review Letters, 95(20). doi:10.1103/physrevlett.95.203901Pendry, J. B. (2006). Controlling Electromagnetic Fields. Science, 312(5781), 1780-1782. doi:10.1126/science.1125907Pendry, J. B. (2000). Negative Refraction Makes a Perfect Lens. Physical Review Letters, 85(18), 3966-3969. doi:10.1103/physrevlett.85.3966Martínez, A., García-Meca, C., Ortuño, R., Rodríguez-Fortuño, F. J., & Martí, J. (2009). Metamaterials for optical security. Applied Physics Letters, 94(25), 251106. doi:10.1063/1.3152794Rodríguez-Fortuño, F. J., García-Meca, C., Ortuño, R., Martí, J., & Martínez, A. (2009). Modeling high-order plasmon resonances of a U-shaped nanowire used to build a negative-index metamaterial. Physical Review B, 79(7). doi:10.1103/physrevb.79.075103Boudarham, G., Feth, N., Myroshnychenko, V., Linden, S., García de Abajo, J., Wegener, M., & Kociak, M. (2010). Spectral Imaging of Individual Split-Ring Resonators. Physical Review Letters, 105(25). doi:10.1103/physrevlett.105.255501Johnson, N. P., Khokhar, A. Z., Chong, H. M. H., De La Rue, R. M., & McMeekin, S. (2006). Characterisation at infrared wavelengths of metamaterials formed by thin-film metallic split-ring resonator arrays on silicon. Electronics Letters, 42(19), 1117. doi:10.1049/el:20062212Rockstuhl, C., Zentgraf, T., Guo, H., Liu, N., Etrich, C., Loa, I., … Giessen, H. (2006). Resonances of split-ring resonator metamaterials in the near infrared. Applied Physics B, 84(1-2), 219-227. doi:10.1007/s00340-006-2205-2Rockstuhl, C., Lederer, F., Etrich, C., Zentgraf, T., Kuhl, J., & Giessen, H. (2006). On the reinterpretation of resonances in split-ring-resonators at normal incidence. Optics Express, 14(19), 8827. doi:10.1364/oe.14.008827Sheridan, A. K., Clark, A. W., Glidle, A., Cooper, J. M., & Cumming, D. R. S. (2007). Multiple plasmon resonances from gold nanostructures. Applied Physics Letters, 90(14), 143105. doi:10.1063/1.2719161Chen, C.-Y., Wu, S.-C., & Yen, T.-J. (2008). Experimental verification of standing-wave plasmonic resonances in split-ring resonators. Applied Physics Letters, 93(3), 034110. doi:10.1063/1.2957978Pfeiffer, C. A., Economou, E. N., & Ngai, K. L. (1974). Surface polaritons in a circularly cylindrical interface: Surface plasmons. Physical Review B, 10(8), 3038-3051. doi:10.1103/physrevb.10.3038Schider, G., Krenn, J. R., Hohenau, A., Ditlbacher, H., Leitner, A., Aussenegg, F. R., … Boreman, G. (2003). Plasmon dispersion relation of Au and Ag nanowires. Physical Review B, 68(15). doi:10.1103/physrevb.68.155427Neubrech, F., Kolb, T., Lovrincic, R., Fahsold, G., Pucci, A., Aizpurua, J., … Karim, S. (2006). Resonances of individual metal nanowires in the infrared. Applied Physics Letters, 89(25), 253104. doi:10.1063/1.2405873Zhou, J., Koschny, T., Kafesaki, M., Economou, E. N., Pendry, J. B., & Soukoulis, C. M. (2005). Saturation of the Magnetic Response of Split-Ring Resonators at Optical Frequencies. Physical Review Letters, 95(22). doi:10.1103/physrevlett.95.223902Delgado, V., Sydoruk, O., Tatartschuk, E., Marqués, R., Freire, M. J., & Jelinek, L. (2009). Analytical circuit model for split ring resonators in the far infrared and optical frequency range. Metamaterials, 3(2), 57-62. doi:10.1016/j.metmat.2009.03.00

    Directive excitation of guided electromagnetic waves through polarization control

    Full text link
    Experimental evidence is reported on the control of the directionality of guided electromagnetic microwaves by the polarization of the exciting wave. Experiments are conducted using a two-dimensional waveguide made of two parallel aluminum plates. The upper plate, which has a linear array of holes, is externally illuminated by a polarized wave whose incident wavevector is contained within the mirror-symmetry plane defined by the linear array. Surprisingly, the measurements show that the propagation inside the waveguide is highly asymmetrical, and it is controlled by the polarization of the incoming wave. This extraordinary phenomenon is explained in terms of a simple model involving a set of dipoles that are excited at the hole positions. Our finding provides a powerful method to sort different polarizations of a free-space beam to different propagation directions of guided electromagnetic waves.The authors gratefully acknowledge B. Bernardo and A. Vila at Electromagnetic Radiation Group Universitat Politecnica de Valencia for the generous donation of the circular polarization antenna for the experiments. J.S.-D. thanks D. Torrent for useful discussions. Financial support from the Spanish Ministry of Economy and Competitiveness (Grants No. TEC2010-19751, No. TEC2011-28664-C02, and No. Consolider CSD2008-00066) is also acknowledged.Carbonell Olivares, J.; Rodríguez Fortuño, FJ.; Díaz Rubio, A.; Martínez Abietar, AJ.; Cervera Moreno, FS.; Sánchez-Dehesa Moreno-Cid, J. (2014). Directive excitation of guided electromagnetic waves through polarization control. Physical Review B. 89:155121-1-155121-7. https://doi.org/10.1103/PhysRevB.89.155121S155121-1155121-789Lin, J., Mueller, J. P. B., Wang, Q., Yuan, G., Antoniou, N., Yuan, X.-C., & Capasso, F. (2013). Polarization-Controlled Tunable Directional Coupling of Surface Plasmon Polaritons. Science, 340(6130), 331-334. doi:10.1126/science.1233746Huang, L., Chen, X., Bai, B., Tan, Q., Jin, G., Zentgraf, T., & Zhang, S. (2013). Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity. Light: Science & Applications, 2(3), e70-e70. doi:10.1038/lsa.2013.26Tsema, B. B., Tsema, Y. B., Shcherbakov, M. R., Lin, Y.-H., Liu, D.-R., Klimov, V. V., … Tsai, D. P. (2012). Handedness-sensitive emission of surface plasmon polaritons by elliptical nanohole ensembles. Optics Express, 20(10), 10538. doi:10.1364/oe.20.010538Drezet, A., Genet, C., Laluet, J.-Y., & Ebbesen, T. W. (2008). Optical chirality without optical activity: How surface plasmons give a twist to light. Optics Express, 16(17), 12559. doi:10.1364/oe.16.012559Schwanecke, A. S., Fedotov, V. A., Khardikov, V. V., Prosvirnin, S. L., Chen, Y., & Zheludev, N. I. (2008). Nanostructured Metal Film with Asymmetric Optical Transmission. Nano Letters, 8(9), 2940-2943. doi:10.1021/nl801794dMenzel, C., Helgert, C., Rockstuhl, C., Kley, E.-B., Tünnermann, A., Pertsch, T., & Lederer, F. (2010). Asymmetric Transmission of Linearly Polarized Light at Optical Metamaterials. Physical Review Letters, 104(25). doi:10.1103/physrevlett.104.253902Kang, M., Chen, J., Cui, H.-X., Li, Y., & Wang, H.-T. (2011). Asymmetric transmission for linearly polarized electromagnetic radiation. Optics Express, 19(9), 8347. doi:10.1364/oe.19.008347Mutlu, M., Akosman, A. E., Serebryannikov, A. E., & Ozbay, E. (2012). Diodelike Asymmetric Transmission of Linearly Polarized Waves Using Magnetoelectric Coupling and Electromagnetic Wave Tunneling. Physical Review Letters, 108(21). doi:10.1103/physrevlett.108.213905Lee, S. H., Choi, M., Kim, T.-T., Lee, S., Liu, M., Yin, X., … Min, B. (2012). Switching terahertz waves with gate-controlled active graphene metamaterials. Nature Materials, 11(11), 936-941. doi:10.1038/nmat3433Beruete, M., Navarro-Cía, M., & Sorolla, M. (2010). Strong lateral displacement in polarization anisotropic extraordinary transmission metamaterial. New Journal of Physics, 12(6), 063037. doi:10.1088/1367-2630/12/6/063037Rodriguez-Fortuno, F. J., Marino, G., Ginzburg, P., O’Connor, D., Martinez, A., Wurtz, G. A., & Zayats, A. V. (2013). Near-Field Interference for the Unidirectional Excitation of Electromagnetic Guided Modes. Science, 340(6130), 328-330. doi:10.1126/science.1233739Lee, S.-Y., Lee, I.-M., Park, J., Oh, S., Lee, W., Kim, K.-Y., & Lee, B. (2012). Role of Magnetic Induction Currents in Nanoslit Excitation of Surface Plasmon Polaritons. Physical Review Letters, 108(21). doi:10.1103/physrevlett.108.213907Pfeiffer, C., & Grbic, A. (2013). Metamaterial Huygens’ Surfaces: Tailoring Wave Fronts with Reflectionless Sheets. Physical Review Letters, 110(19). doi:10.1103/physrevlett.110.197401Carbonell, J., Díaz-Rubio, A., Torrent, D., Cervera, F., Kirleis, M. A., Piqué, A., & Sánchez-Dehesa, J. (2012). Radial Photonic Crystal for detection of frequency and position of radiation sources. Scientific Reports, 2(1). doi:10.1038/srep0055

    Sorting linearly polarized photons with a single scatterer

    Full text link
    This paper was published in OPTICS LETTERS and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://dx.doi.org/10.1364/OL.39.001394. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under lawIntuitively, light impinging on a spatially mirror-symmetric object will be scattered equally into mirror-symmetric directions. This intuition can fail at the nanoscale if the polarization of the incoming light is properly tailored, as long as mirror symmetry is broken in the axes perpendicular to both the incident wave vector and the remaining mirror-symmetric direction. The unidirectional excitation of plasmonic modes using circularly polarized light has been recently demonstrated. Here, we generalize this concept and show that linearly polarized photons impinging on a single spatially symmetric scatterer created in a silicon waveguide are guided into a certain direction of the waveguide depending exclusively on their polarization angle and the structure asymmetry. Our work broadens the scope of polarization-induced directionality beyond plasmonics, with applications in polarization (de)multiplexing, unidirectional coupling, directional switching, radiation polarization control, and polarization-encoded quantum information processing in photonic integrated circuitsThis work has received financial support from the Spanish government (contracts Consolider EMET CSD2008-00066 and TEC2011-28664-C02-02) and GV (grant ACOMP/2013/013). F. J. R.-F. acknowledges support from grant FPI of GV. D. Puerto acknowledges support from grant Juan de la Cierva (JCI-2010-07479).Rodríguez Fortuño, FJ.; Puerto Garcia, D.; Griol Barres, A.; Bellieres, LC.; Martí Sendra, J.; Martínez Abietar, AJ. (2014). Sorting linearly polarized photons with a single scatterer. Optics Letters. 39(6):1394-1397. https://doi.org/10.1364/OL.39.001394S13941397396Winzer, P. J., Gnauck, A. H., Doerr, C. R., Magarini, M., & Buhl, L. L. (2010). Spectrally Efficient Long-Haul Optical Networking Using 112-Gb/s Polarization-Multiplexed 16-QAM. Journal of Lightwave Technology, 28(4), 547-556. doi:10.1109/jlt.2009.2031922Crespi, A., Ramponi, R., Osellame, R., Sansoni, L., Bongioanni, I., Sciarrino, F., … Mataloni, P. (2011). Integrated photonic quantum gates for polarization qubits. Nature Communications, 2(1). doi:10.1038/ncomms1570Tuchscherer, P., Rewitz, C., Voronine, D. V., Javier García de Abajo, F., Pfeiffer, W., & Brixner, T. (2009). Analytic coherent control of plasmon propagation in nanostructures. Optics Express, 17(16), 14235. doi:10.1364/oe.17.014235Sukharev, M., & Seideman, T. (2006). Phase and Polarization Control as a Route to Plasmonic Nanodevices. Nano Letters, 6(4), 715-719. doi:10.1021/nl0524896Stockman, M. I., Faleev, S. V., & Bergman, D. J. (2002). Coherent Control of Femtosecond Energy Localization in Nanosystems. Physical Review Letters, 88(6). doi:10.1103/physrevlett.88.067402Aeschlimann, M., Bauer, M., Bayer, D., Brixner, T., García de Abajo, F. J., Pfeiffer, W., … Steeb, F. (2007). Adaptive subwavelength control of nano-optical fields. Nature, 446(7133), 301-304. doi:10.1038/nature05595Aeschlimann, M., Bauer, M., Bayer, D., Brixner, T., Cunovic, S., Fischer, A., … Voronine, D. V. (2012). Optimal open-loop near-field control of plasmonic nanostructures. New Journal of Physics, 14(3), 033030. doi:10.1088/1367-2630/14/3/033030Rodriguez-Fortuno, F. J., Marino, G., Ginzburg, P., O’Connor, D., Martinez, A., Wurtz, G. A., & Zayats, A. V. (2013). Near-Field Interference for the Unidirectional Excitation of Electromagnetic Guided Modes. Science, 340(6130), 328-330. doi:10.1126/science.1233739Lin, J., Mueller, J. P. B., Wang, Q., Yuan, G., Antoniou, N., Yuan, X.-C., & Capasso, F. (2013). Polarization-Controlled Tunable Directional Coupling of Surface Plasmon Polaritons. Science, 340(6130), 331-334. doi:10.1126/science.1233746Shitrit, N., Yulevich, I., Maguid, E., Ozeri, D., Veksler, D., Kleiner, V., & Hasman, E. (2013). Spin-Optical Metamaterial Route to Spin-Controlled Photonics. Science, 340(6133), 724-726. doi:10.1126/science.1234892Lee, S.-Y., Lee, I.-M., Park, J., Oh, S., Lee, W., Kim, K.-Y., & Lee, B. (2012). Role of Magnetic Induction Currents in Nanoslit Excitation of Surface Plasmon Polaritons. Physical Review Letters, 108(21). doi:10.1103/physrevlett.108.213907Huang, L., Chen, X., Bai, B., Tan, Q., Jin, G., Zentgraf, T., & Zhang, S. (2013). Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity. Light: Science & Applications, 2(3), e70-e70. doi:10.1038/lsa.2013.26Tsema, B. B., Tsema, Y. B., Shcherbakov, M. R., Lin, Y.-H., Liu, D.-R., Klimov, V. V., … Tsai, D. P. (2012). Handedness-sensitive emission of surface plasmon polaritons by elliptical nanohole ensembles. Optics Express, 20(10), 10538. doi:10.1364/oe.20.010538Yao, X. S., Yan, L.-S., Zhang, B., Willner, A. E., & Jiang, J. (2007). All-optic scheme for automatic polarization division demultiplexing. Optics Express, 15(12), 7407. doi:10.1364/oe.15.007407Taillaert, D., Harold Chong, Borel, P. I., Frandsen, L. H., De La Rue, R. M., & Baets, R. (2003). A compact two-dimensional grating coupler used as a polarization splitter. IEEE Photonics Technology Letters, 15(9), 1249-1251. doi:10.1109/lpt.2003.816671Taillaert, D., Bogaerts, W., Bienstman, P., Krauss, T. F., Van Daele, P., Moerman, I., … Baets, R. (2002). An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers. IEEE Journal of Quantum Electronics, 38(7), 949-955. doi:10.1109/jqe.2002.1017613Bogaerts, W., Taillaert, D., Dumon, P., Van Thourhout, D., Baets, R., & Pluk, E. (2007). A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires. Optics Express, 15(4), 1567. doi:10.1364/oe.15.00156

    Design and implementation of plasmonic metamaterials and devices

    Full text link
    La plasmónica es la ciencia que estudia la interacción, a escala nanométrica, entre la luz y los electrones libres de los metales, dando lugar a la propagación de ondas altamente confinadas a su superficie. La plasmónica tiene multitud de aplicaciones en nanotecnología, como son el sensado biológico y químico, espectroscopía, nanolitografía, comunicaciones de banda ultra ancha integradas en chips, nanoantenas para luz, filtrado, y manipulación de señales ópticas, entre muchas otras. Una de las aplicaciones más novedosas es la creación de metamateriales: estructuras artificiales diseñadas para controlar la propagación de la luz, con aplicaciones fascinantes como la lente perfecta o la capa de invisibilidad. La plasmónica y los metamateriales están al frente de la investigación actual en fotónica, gracias al auge de la nanotecnología y la nanociencia, que abre las puertas a una gran cantidad de nuevas aplicaciones. Esta tesis, desarrollada en el Centro de Tecnología Nanofotónica de Valencia de la UPV, en colaboración con la University of Pennsylvania y King's College London, trata de aportar nuevas ideas, estructuras y dispositivos a los campos de la plasmónica y los metamateriales, tratando de realizar su fabricación y medida experimental cuando sea posible. La tesis no se ciñe a una única aplicación o dispositivo, sino que realiza una extensiva exploración de los diversos sub-campos de la plasmónica en busca de fenómenos novedosos. Los resultados descritos son los siguientes: En el campo de los metamateriales de índice negativo se presentan dos estructuras: nanocables en forma de U, y guías coaxiales plasmónicas. En el campo del sensado plasmónico se presenta el diseño y la prueba experimental de un sensor se sustancias químicas de altas prestaciones con nanocruces metálicas. También se detallan teóricamente: un novedoso dispositivo para luz lenta e inversión temporal de pulsos basada en metamateriales y cristales fotónicos, un metamaterial para conversión de polarización sintonizable mediante pérdidas, un análogo plasmónico al efecto de levitación Meissner en superconductores y un método de reducción de pérdidas en guías plasmónicas mediante interferencia en guías multimodo. Por último se presenta teórica y experimentalmente un nuevo ejemplo fundamental de interferencia de campo cercano, logrando la excitación unidireccional de modos fotónicos ---ya sean plasmónicos o no--- mediante los campos cercanos de un dipolo circularmente polarizado.Rodríguez Fortuño, FJ. (2013). Design and implementation of plasmonic metamaterials and devices [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/31207TESISPremiad
    corecore