4,033 research outputs found

    Neutrinoless ββ\beta\beta decay nuclear matrix elements in an isotopic chain

    Full text link
    We analyze nuclear matrix elements (NME) of neutrinoless double beta decay calculated for the Cadmium isotopes. Energy density functional methods including beyond mean field effects such as symmetry restoration and shape mixing are used. Strong shell effects are found associated to the underlying nuclear structure of the initial and final nuclei. Furthermore, we show that NME for two-neutrino double beta decay evaluated in the closure approximation, Mcl2νM^{2\nu}_{\mathrm{cl}}, display a constant proportionality with respect to the Gamow-Teller part of the neutrinoless NME, MGT0νM^{0\nu}_{\mathrm{GT}}. This opens the possibility of determining the MGT0νM^{0\nu}_{\mathrm{GT}} matrix elements from β∓\beta^{\mp} Gamow-Teller strength functions. Finally, the interconnected role of deformation, pairing, configuration mixing and shell effects in the NMEs is discussed

    Non-linear Plank Problems and polynomial inequalities

    Get PDF
    We study lower bounds for the norm of the product of polynomials and their applications to the so called \emph{plank problem.} We are particularly interested in polynomials on finite dimensional Banach spaces, in which case our results improve previous works when the number of polynomials is large.Comment: 19 page

    Collective and Single-particle Motion in Beyond Mean Field Approaches

    Full text link
    We present a novel nuclear energy density functional method to calculate spectroscopic properties of atomic nuclei. Intrinsic nuclear quadrupole deformations and rotational frequencies are considered simultaneously as the degrees of freedom within a symmetry conserving configuration mixing framework. The present method allows the study of nuclear states with collective and single-particle character. We calculate the fascinating structure of the semi-magic 44S nucleus as a first application of the method, obtaining an excellent quantitative agreement both with the available experimental data and with state-of-the-art shell model calculations.Comment: 5 pages, 4 figures, accepted for publication in Phys. Rev. Let

    Systematic study of infrared energy corrections in truncated oscillator spaces

    Full text link
    We study the convergence properties of nuclear binding energies and two-neutron separation energies obtained with self-consistent mean-field calculations based on the Hartree-Fock-Bogolyubov (HFB) method with Gogny-type effective interactions. Owing to lack of convergence in a truncated working basis, we employ and benchmark one of the recently proposed infrared energy correction techniques to extrapolate our results to the limit of an infinite model space. We also discuss its applicability to global calculations of nuclear masses.Comment: 12 pages, 12 figure
    • …
    corecore