247 research outputs found

    A prospective study to evaluate the accuracy of pulse power analysis to monitor cardiac output in critically ill patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Intermittent measurement of cardiac output may be performed using a lithium dilution technique (LiDCO). This can then be used to calibrate a pulse power algorithm of the arterial waveform which provides a continuous estimate of this variable. The purpose of this study was to examine the duration of accuracy of the pulse power algorithm in critically ill patients with respect to time when compared to measurements of cardiac output by an independent technique.</p> <p>Methods</p> <p>Pulse power analysis was performed on critically ill patients using a proprietary commercial monitor (PulseCO). All measurements were made using an in-dwelling radial artery line and according to manufacturers instructions. Intermittent measurements of cardiac output were made with LiDCO in order to validate the pulse power measurements. These were made at baseline and then following 1, 2, 4 and 8 hours. The LiDCO measurement was considered the reference for comparison in this study. The two methods of measuring cardiac output were then compared by linear regression and a Bland Altman analysis. An error rate for the limits of agreement (LOA) between the two techniques of less than 30% was defined as being acceptable for this study.</p> <p>Results</p> <p>14 critically ill medical and surgical patients were enrolled over a three month period. At baseline patients showed a wide range of cardiac output (median 7.5 L/min, IQR 5.1 -9.0 L/min). The bias and limits of agreement between the two techniques was deemed acceptable for the first four hours of the study with percentage errors being 29%, 22%, and 285 respectively. The percentage error at eight hours following calibration increased to 36%. The ability of the PulseCo to detect changes in cardiac output was assessed with a similar analysis. The PulseCO tracked the changes in cardiac output with adequate accuracy for the first four hours with percentage errors being 20%, 24% and 25%. However at eight hours the error had increased to 43%.</p> <p>Conclusion</p> <p>The agreement between lithium dilution cardiac output and the pulse power algorithm in the PulseCO monitor remains acceptable for up to four hours in critically ill patients.</p

    Tumor innate immunity primed by specific interferon-stimulated endogenous retroviruses.

    Get PDF
    Mesenchymal tumor subpopulations secrete pro-tumorigenic cytokines and promote treatment resistance1-4. This phenomenon has been implicated in chemorefractory small cell lung cancer and resistance to targeted therapies5-8, but remains incompletely defined. Here, we identify a subclass of endogenous retroviruses (ERVs) that engages innate immune signaling in these cells. Stimulated 3 prime antisense retroviral coding sequences (SPARCS) are oriented inversely in 3' untranslated regions of specific genes enriched for regulation by STAT1 and EZH2. Derepression of these loci results in double-stranded RNA generation following IFN-γ exposure due to bi-directional transcription from the STAT1-activated gene promoter and the 5' long terminal repeat of the antisense ERV. Engagement of MAVS and STING activates downstream TBK1, IRF3, and STAT1 signaling, sustaining a positive feedback loop. SPARCS induction in human tumors is tightly associated with major histocompatibility complex class 1 expression, mesenchymal markers, and downregulation of chromatin modifying enzymes, including EZH2. Analysis of cell lines with high inducible SPARCS expression reveals strong association with an AXL/MET-positive mesenchymal cell state. While SPARCS-high tumors are immune infiltrated, they also exhibit multiple features of an immune-suppressed microenviroment. Together, these data unveil a subclass of ERVs whose derepression triggers pathologic innate immune signaling in cancer, with important implications for cancer immunotherapy

    Immunohistochemical Detection of MYC-driven Diffuse Large B-Cell Lymphomas

    Get PDF
    Diffuse large B cell lymphoma (DLBCL) is a clinically and genetically heterogeneous disease. A small subset of DLBCLs has translocations involving the MYC locus and an additional group has a molecular signature resembling Burkitt lymphoma (mBL). Presently, identification of such cases by morphology is unreliable and relies on cytogenetic or complex molecular methods such as gene transcriptional profiling. Herein, we describe an immunohistochemical (IHC) method for identifying DLBCLs with increased MYC protein expression. We tested 77 cases of DLBCL and identified 15 cases with high MYC protein expression (nuclear staining in >50% of tumor cells). All MYC translocation positive cases had increased MYC protein expression by this IHC assay. In addition, gene set enrichment analysis (GSEA) of the DLBCL transcriptional profiles revealed that tumors with increased MYC protein expression (regardless of underlying MYC translocation status) had coordinate upregulation of MYC target genes, providing molecular confirmation of the IHC results. We then generated a molecular classifier derived from the MYC IHC results in our cases and employed it to successfully classify mBLs from two previously reported independent case series, providing additional confirmation that the MYC IHC results identify clinically important subsets of DLBCLs. Lastly, we found that DLBCLs with high MYC protein expression had inferior overall survival when treated with R-CHOP. In conclusion, the IHC method described herein can be used to readily identify the biologically and clinically distinct cases of MYC-driven DLBCL, which represent a clinically significant subset of DLBCL cases due to their inferior overall survival

    Identification and Interpretation of Longitudinal Gene Expression Changes in Trauma

    Get PDF
    The relationship between leukocyte gene expression and recovery of respiratory function after injury may provide information on the etiology of multiple organ dysfunction.To find a list of genes for which expression after injury predicts respiratory recovery, and to identify which networks and pathways characterize these genes.Blood was sampled at 12 hours and at 1, 4, 7, 21 and 28 days from 147 patients who had been admitted to the hospital after blunt trauma. Leukocyte gene expression was measured using Affymetrix oligonucleotide arrays. A linear model, fit to each probe-set expression value, was used to impute the gene expression trajectory over the entire follow-up period. The proportional hazards model score test was used to calculate the statistical significance of each probe-set trajectory in predicting respiratory recovery. A list of genes was determined such that the expected proportion of false positive results was less than 10%. These genes were compared to the Gene Ontology for 'response to stimulus' and, using Ingenuity software, were mapped into networks and pathways.The median time to respiratory recovery was 6 days. There were 170 probe-sets representing 135 genes that were found to be related to respiratory recovery. These genes could be mapped to nine networks. Two known pathways that were activated were antigen processing and presentation and JAK-signaling.The examination of the relationship of gene expression over time with a patient's clinical course can provide information which may be useful in determining the mechanism of recovery or lack of recovery after severe injury

    Autocrine Activation of the MET Receptor Tyrosine Kinase in Acute Myeloid Leukemia

    Get PDF
    Although the treatment of acute myeloid leukemia (AML) has improved significantly, more than half of all patients develop disease that is refractory to intensive chemotherapy. Functional genomics approaches offer a means to discover specific molecules mediating aberrant growth and survival of cancer cells. Thus, using a loss-of-function RNA interference genomic screen, we identified aberrant expression of the hepatocyte growth factor (HGF) as a critical factor in AML pathogenesis. We found HGF expression leading to autocrine activation of its receptor tyrosine kinase, MET, in nearly half of the AML cell lines and clinical samples studied. Genetic depletion of HGF or MET potently inhibited the growth and survival of HGF-expressing AML cells. However, leukemic cells treated with the specific MET kinase inhibitor crizotinib developed resistance due to compensatory upregulation of HGF expression, leading to restoration of MET signaling. In cases of AML where MET is coactivated with other tyrosine kinases, such as fibroblast growth factor receptor 1 (FGFR1), concomitant inhibition of FGFR1 and MET blocked compensatory HGF upregulation, resulting in sustained logarithmic cell kill both in vitro and in xenograft models in vivo. Our results demonstrate widespread dependence of AML cells on autocrine activation of MET, as well as the importance of compensatory upregulation of HGF expression in maintaining leukemogenic signaling by this receptor. We anticipate that these findings will lead to the design of additional strategies to block adaptive cellular responses that drive compensatory ligand expression as an essential component of the targeted inhibition of oncogenic receptors in human cancers

    The Janus kinases (Jaks)

    Get PDF
    The Janus kinase (Jak) family is one of ten recognized families of non-receptor tyrosine kinases. Mammals have four members of this family, Jak1, Jak2, Jak3 and Tyrosine kinase 2 (Tyk2). Birds, fish and insects also have Jaks. Each protein has a kinase domain and a catalytically inactive pseudo-kinase domain, and they each bind cytokine receptors through amino-terminal FERM (Band-4.1, ezrin, radixin, moesin) domains. Upon binding of cytokines to their receptors, Jaks are activated and phosphorylate the receptors, creating docking sites for signaling molecules, especially members of the signal transducer and activator of transcription (Stat) family. Mutations of the Drosophila Jak (Hopscotch) have revealed developmental defects, and constitutive activation of Jaks in flies and humans is associated with leukemia-like syndromes. Through the generation of Jak-deficient cell lines and gene-targeted mice, the essential, nonredundant functions of Jaks in cytokine signaling have been established. Importantly, deficiency of Jak3 is the basis of human autosomal recessive severe combined immunodeficiency (SCID); accordingly, a selective Jak3 inhibitor has been developed, forming a new class of immunosuppressive drugs
    corecore