1,126 research outputs found

    Landsat TM and ETM+ derived snowline altitudes in the Cordillera Huayhuash and Cordillera Raura, Peru, 1986–2005

    Get PDF
    The Cordilleras Huayhuash and Raura are remote glacierized ranges in the Andes Mountains of Peru. A robust assessment of modern glacier change is important for understanding how regional change affects Andean communities, and for placing paleo-glaciers in a context relative to modern glaciation and climate. Snowline altitudes (SLAs) derived from satellite imagery are used as a proxy for modern (1986–2005) local climate change in a key transition zone in the Andes. <br><br> Clear sky, dry season Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM+) satellite images from 1986–2005 were used to identify snowline positions, and their altitude ranges were extracted from an Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) digital elevation model (DEM). Based on satellite records from 31 glaciers, average snowline altitudes (SLAs), an approximation for the equilibrium line altitude (ELA), for the Cordillera Huayhuash (13 glaciers) and Cordillera Raura (18 glaciers) from 1986–2005 were 5051 m a.s.l. from 1986–2005 and 5006 m a.s.l. from 1986–2002, respectively. During the same time period, the Cordillera Huayhuash SLA experienced no significant change while the Cordillera Raura SLA rose significantly from 4947 m a.s.l. to 5044 m a.s.l

    Pertussis toxin induces structural changes in G alpha proteins independently of ADP-ribosylation.

    Full text link

    Controlled formation of metallic nanowires via Au nanoparticle ac trapping

    Full text link
    Applying ac voltages, we trapped gold nanoparticles between microfabricated electrodes under well-defined conditions. We demonstrate that the nanoparticles can be controllably fused together to form homogeneous gold nanowires with pre-defined diameters and conductance values. Whereas electromigration is known to form a gap when a dc voltage is applied, this ac technique achieves the opposite, thereby completing the toolkit for the fabrication of nanoscale junctions.Comment: Nanotechnology 18, 235202 (2007

    Inter-hemispheric linkages in climate change: Paleo-perspectives for future climate change

    Get PDF
    The Pole-Equator-Pole (PEP) projects of the PANASH (Paleoclimates of the Northern and Southern Hemisphere) programme have significantly advanced our understanding of past climate change on a global basis and helped to integrate paleo-science across regions and research disciplines. PANASH science allows us to constrain predictions for future climate change and to contribute to the management of consequent environmental changes. We identify three broad areas where PEP science makes key contributions. 1. The pattern of global changes. Knowing the exact timing of glacial advances (synchronous or otherwise) during the last glaciation is critical to understanding interhemispheric links in climate. Work in PEPI demonstrated that the tropical Andes in South America were deglaciated earlier than the Northern Hemisphere (NH) and that an extended warming began there ca. 21 000 cal years BP. The general pattern is consistent with Antarctica and has now been replicated from studies in Southern Hemisphere (SH) regions of the PEPII transect. That significant deglaciation of SH alpine systems and Antarctica led deglaciation of NH ice sheets may reflect either i) faster response times in alpine systems and Antarctica, ii) regional moisture patterns that influenced glacier mass balance, or iii) a SH temperature forcing that led changes in the NH. This highlights the limitations of current understanding and the need for further fundamental paleoclimate research. 2. Changes in modes of operation of oscillatory climate systems. Work across all the PEP transects has led to the recognition that the El Nino Southern Oscillation (ENSO) phenomenon has changed markedly through time. It now appears that ENSO operated during the last glacial termination and during the early Holocene, but that precipitation teleconnections even within the Pacific Basin were turned down, or off. In the modern ENSO phenomenon both inter-annual and seven year periodicities are present, with the inter-annual signal dominant. Paleo-data demonstrate that the relative importance of the two periodicities changes through time, with longer periodicities dominant in the early Holocene. 3. The recognition of climate modulation of oscillatory systems by climate events. We examine the relationship of ENSO to a SH climate event, the Antarctic cold reversal (ACR), in the New Zealand region. We demonstrate that the onset of the ACR was associated with the apparent switching on of an ENSO signal in New Zealand. We infer that this related to enhanced zonal SW winds with the amplification of the pressure fields allowing an existing but weak ENSO signal to manifest itself. Teleconnections of this nature would be difficult to predict for future abrupt change as boundary conditions cannot readily be specified. Paleo-data are critical to predicting the teleconnections of future changes

    Structure of the turkey erythrocyte adenylate cyclase system.

    Full text link

    Etiology of the membrane potential of rat white fat adipocytes

    Get PDF
    The plasma membrane potential (Vm) is key to many physiological processes, however its ionic aetiology in white fat adipocytes is poorly characterised. To address this question, we have employed the perforated patch current-clamp and cell-attached patch-clamp methods in isolated primary white fat adipocytes and their cellular model: 3T3-L1. The resting Vm of primary and 3T3-L1 adipocytes were -32.1±1.2mV (n=95) and -28.8±1.2mV (n=87), respectively. Vm was independent of cell size and fat content. Elevation of extracellular [K+] to 50mM by equimolar substitution of bath Na+ did not affect Vm, whereas substitution of bath Na+ with the membrane impermeant cation N-methyl-D-glucamine+ hyperpolarized Vm by 16mV, data indicative of a non-selective cation permeability. Substitution of 133mM extracellular Cl- with gluconate, depolarised Vm to +5.5, whereas Cl- substitution with I- caused a -9mV hyperpolarization. Isoprenaline (10µM) but not insulin (100nM) significantly depolarized Vm. Single-channel ion activity was voltage independent; currents were indicative for Cl- with an inward slope conductance of 16±1.3pS (n=11) and a reversal potential close to the Cl- equilibrium potential: -29±1.6mV. Reduction of extracellular Cl- elevated the intracellular Ca2+ of adipocytes. In conclusion, the Vm of white fat adipocyte is well described by the Goldman-Hodgkin-Katz equation with a predominant permeability to Cl-. Consequently, changes in serum Cl- homeostasis or the adipocyte’s permeability to this anion via drugs will affect its Vm, intracellular Ca2+ and ultimately its function and its role in metabolic control
    corecore