23 research outputs found

    The Rise of a New Mental Health Epidemic: TikTok and Social Media, and Their Negative Impact on Young Adults

    Get PDF
    The effects of TikTok and social media are explored to understand how detrimental social networking sites are to one\u27s mental health. The research and literature show how the overuse of social media contributes to social media addiction, mental health issues, body dysmorphia, and cyberbullying. A study is analyzed that reports how many are affected by cyberbullying and whether they received counseling for their mental health. It was concluded that social media does much more harm than good, and users could try altering their lives by reducing the amount of time spent on social networking sites

    Alu insertion polymorphisms shared by Papio baboons and Theropithecus gelada reveal an intertwined common ancestry

    Get PDF
    © 2019 The Author(s). Background: Baboons (genus Papio) and geladas (Theropithecus gelada) are now generally recognized as close phylogenetic relatives, though morphologically quite distinct and generally classified in separate genera. Primate specific Alu retrotransposons are well-established genomic markers for the study of phylogenetic and population genetic relationships. We previously reported a computational reconstruction of Papio phylogeny using large-scale whole genome sequence (WGS) analysis of Alu insertion polymorphisms. Recently, high coverage WGS was generated for Theropithecus gelada. The objective of this study was to apply the high-Throughput poly-Detect method to computationally determine the number of Alu insertion polymorphisms shared by T. gelada and Papio, and vice versa, by each individual Papio species and T. gelada. Secondly, we performed locus-specific polymerase chain reaction (PCR) assays on a diverse DNA panel to complement the computational data. Results: We identified 27,700 Alu insertions from T. gelada WGS that were also present among six Papio species, with nearly half (12,956) remaining unfixed among 12 Papio individuals. Similarly, each of the six Papio species had species-indicative Alu insertions that were also present in T. gelada. In general, P. kindae shared more insertion polymorphisms with T. gelada than did any of the other five Papio species. PCR-based genotype data provided additional support for the computational findings. Conclusions: Our discovery that several thousand Alu insertion polymorphisms are shared by T. gelada and Papio baboons suggests a much more permeable reproductive barrier between the two genera then previously suspected. Their intertwined evolution likely involves a long history of admixture, gene flow and incomplete lineage sorting

    A Multisite Preregistered Paradigmatic Test of the Ego-Depletion Effect

    Get PDF
    We conducted a preregistered multilaboratory project (k = 36; N = 3,531) to assess the size and robustness of ego-depletion effects using a novel replication method, termed the paradigmatic replication approach. Each laboratory implemented one of two procedures that was intended to manipulate self-control and tested performance on a subsequent measure of self-control. Confirmatory tests found a nonsignificant result (d = 0.06). Confirmatory Bayesian meta-analyses using an informed-prior hypothesis (δ = 0.30, SD = 0.15) found that the data were 4 times more likely under the null than the alternative hypothesis. Hence, preregistered analyses did not find evidence for a depletion effect. Exploratory analyses on the full sample (i.e., ignoring exclusion criteria) found a statistically significant effect (d = 0.08); Bayesian analyses showed that the data were about equally likely under the null and informed-prior hypotheses. Exploratory moderator tests suggested that the depletion effect was larger for participants who reported more fatigue but was not moderated by trait self-control, willpower beliefs, or action orientation.</p

    An Investigation of the Effects of Feldenkrais-Based Sensory Movement Techniques on Breathing for Voice Production for the Stage

    No full text
    The purpose of this study was to investigate the effects of a Feldenkrais-based sensory movement approach on breathing for speech production in students who are planning a career in stage performance. The Feldenkrais Method is designed to use movement and perception to facilitate individualized improvement in function. Seventeen students in THE 326 at Missouri State University served as the experimental group. Eleven theater students who had not been exposed to the Feldenkrais Method in any other class comprised the control group. Objective measures of breathing and voice were collected for all participants. During the course, the experimental group also completed reflection journals about their experience with the Feldenkrais-based approach to learning. Results revealed statistically significant differences regarding vocal quality when comparing the experimental group with the control group, and when comparing pre- and post-Feldenkrais experiences within the experimental group. The use of both quantitative and qualitative measurements was of value. The inclusion of Feldenkrais-based techniques in methods to prepare students for a career in stage performance appears warranted and worthy of continued investigation

    Stomatal closure, basal leaf embolism and shedding protect the hydraulic integrity of grape stems

    No full text
    The time scale of stomatal closure and xylem cavitation during plant dehydration, as well as the fate of embolised organs, is under debate, largely due to methodological limitations in the evaluation of embolism. While some argue that complete stomatal closure precedes the occurrence of embolism, others believe that the two are contemporaneous processes that are accompanied with daily xylem refilling. Here we utilize an optical light transmission method, to continuously monitor xylem cavitation in leaves of dehydrating grapevines (Vitis vinifera L.) in concert with stomatal conductance and stem and petiole hydraulic measurements. Magnetic resonance imaging (MRI) was used to continuously monitor xylem cavitation and flow rates in the stem of an intact vine during 10 days of dehydration. The results showed that complete stomatal closure preceded the appearance of embolism in the leaves and the stem by several days. Basal leaves were more vulnerable to xylem embolism than apical leaves and, once embolised, were shed, thereby preventing further water loss and protecting the hydraulic integrity of younger leaves and the stem. As a result, embolism in the stem was minimal even when drought led to complete leaf shedding. These findings suggest that grapevines avoid xylem embolism rather than tolerate it

    Modulatory activation of an invertebrate Kir channel by protein kinase C: Investigation of an interaction with PIP2

    No full text
    All vertebrate inwardly rectifying potassium (Kir) channels require for activity the membrane lipid, phosphatidyl inositol 4,5-bisphosphate or PIP2. Evidence from several labs points to possible interactions between PIP2-mediated regulation of Kir channel activity and channel phosphorylation. For example, vertebrate Kir2.3 channels are inhibited by the protein kinase C (PKC) activator, phorbol 12-myristate-13-acetate (PMA), but are made insensitive to PKC activation by a mutation that increases the channel’s apparent affinity for PIP2 . Also, PMA treatment enhances Kir1.1 channel sensitivity to internal pH by a mechanism that depends on phosphorylation of a threonine residue which also regulates PIP2 sensitivity. Furthermore, Kir1.1 mutants with reduced PIP2 affinity have an increased sensitivity to inhibition by PMA. Together, the data suggest that Kir channel inhibition by PKC activation is inversely correlated with the channel’s affinity for interaction with PIP2. To further explore this interaction, we studied PKC regulation of AqKir, an inwardly rectifying potassium channel cloned from the marine sponge Amphimedon queenslandica. We recently reported that this invertebrate Kir channel has a very low affinity for PIP2. Using two-electrode voltage clamp, PMA (0.3 -1 μM) enhanced the AqKir K+-current by more than 2-fold in Xenopus oocytes. The specific PKC inhibitor, bis-indolylmaleimide type I (6-10 μM), and the non-specific kinase inhibitor, staurosporine (150 nM), each blocked the effect of PMA on AqKir. We identified a threonine residue as a possible phosphoacceptor site for kinase-mediated current activation in AqKir; substitution of alanine at this site impaired PMA activation while substitution of serine retained modulation by PMA. Mutations in AqKir that restored a vertebrate level of high affinity regulation by PIP2, as assessed by electrophysiological excised patches recording and molecular dynamic simulations, impaired the ability of PMA to activate the AqKir channel. Because the postulated PKC phosphorylation residue is spatially juxtaposed to the PIP2 binding residues, we are testing for functional interactions between phosphorylation and PIP2. To examine this, we are evaluating how PMA alters the kinetics of onset and recovery from voltage-sensitive phosphatase-mediated reduction of PIP2 in wild-type AqKir and mutant channels with high affinity for PIP2. In addition, we are using our published homology model to examine the energetic effects of channel phosphorylation on PIP2 binding in WT and mutant AqKir channels. Future work aims to understand the interaction between the identified phosphoacceptor sites and kinase-mediated modulation of AqKir channels and provide comparative data for improving our understanding of the modulation of vertebrate Kir channel activity. Support or Funding InformationSupported by NIH grant 2R15-GM096142 to Linda Boland

    Modulatory activation of an invertebrate Kir channel by protein kinase C: Investigation of an interaction with PIP2

    No full text
    All vertebrate inwardly rectifying potassium (Kir) channels require for activity the membrane lipid, phosphatidyl inositol 4,5-bisphosphate or PIP2. Evidence from several labs points to possible interactions between PIP2-mediated regulation of Kir channel activity and channel phosphorylation. For example, vertebrate Kir2.3 channels are inhibited by the protein kinase C (PKC) activator, phorbol 12-myristate-13-acetate (PMA), but are made insensitive to PKC activation by a mutation that increases the channel’s apparent affinity for PIP2 . Also, PMA treatment enhances Kir1.1 channel sensitivity to internal pH by a mechanism that depends on phosphorylation of a threonine residue which also regulates PIP2 sensitivity. Furthermore, Kir1.1 mutants with reduced PIP2 affinity have an increased sensitivity to inhibition by PMA. Together, the data suggest that Kir channel inhibition by PKC activation is inversely correlated with the channel’s affinity for interaction with PIP2. To further explore this interaction, we studied PKC regulation of AqKir, an inwardly rectifying potassium channel cloned from the marine sponge Amphimedon queenslandica. We recently reported that this invertebrate Kir channel has a very low affinity for PIP2. Using two-electrode voltage clamp, PMA (0.3 -1 μM) enhanced the AqKir K+-current by more than 2-fold in Xenopus oocytes. The specific PKC inhibitor, bis-indolylmaleimide type I (6-10 μM), and the non-specific kinase inhibitor, staurosporine (150 nM), each blocked the effect of PMA on AqKir. We identified a threonine residue as a possible phosphoacceptor site for kinase-mediated current activation in AqKir; substitution of alanine at this site impaired PMA activation while substitution of serine retained modulation by PMA. Mutations in AqKir that restored a vertebrate level of high affinity regulation by PIP2, as assessed by electrophysiological excised patches recording and molecular dynamic simulations, impaired the ability of PMA to activate the AqKir channel. Because the postulated PKC phosphorylation residue is spatially juxtaposed to the PIP2 binding residues, we are testing for functional interactions between phosphorylation and PIP2. To examine this, we are evaluating how PMA alters the kinetics of onset and recovery from voltage-sensitive phosphatase-mediated reduction of PIP2 in wild-type AqKir and mutant channels with high affinity for PIP2. In addition, we are using our published homology model to examine the energetic effects of channel phosphorylation on PIP2 binding in WT and mutant AqKir channels. Future work aims to understand the interaction between the identified phosphoacceptor sites and kinase-mediated modulation of AqKir channels and provide comparative data for improving our understanding of the modulation of vertebrate Kir channel activity. Support or Funding InformationSupported by NIH grant 2R15-GM096142 to Linda Boland

    Recently Integrated Alu Elements in Capuchin Monkeys: A Resource for Cebus/Sapajus Genomics

    No full text
    Capuchins are platyrrhines (monkeys found in the Americas) within the Cebidae family. For most of their taxonomic history, the two main morphological types of capuchins, gracile (untufted) and robust (tufted), were assigned to a single genus, Cebus. Further, all tufted capuchins were assigned to a single species, Cebus apella, despite broad geographic ranges spanning Central and northern South America. In 2012, tufted capuchins were assigned to their genus, Sapajus, with eight currently recognized species and five Cebus species, although these numbers are still under debate. Alu retrotransposons are a class of mobile element insertion (MEI) widely used to study primate phylogenetics. However, Alu elements have rarely been used to study capuchins. Recent genome-level assemblies for capuchins (Cebus imitator; [Cebus_imitator_1.0] and Sapajus apella [GSC_monkey_1.0]) facilitated large scale ascertainment of young lineage-specific Alu insertions. Reported here are 1607 capuchin specific and 678 Sapajus specific Alu insertions along with candidate oligonucleotides for locus-specific PCR assays for many elements. PCR analyses identified 104 genus level and 51 species level Alu insertion polymorphisms. The Alu datasets reported in this study provide a valuable resource that will assist in the classification of archival samples lacking phenotypic data and for the study of capuchin phylogenetic relationships.This research was supported by the National Institute of Health R01 GM59290 (M.A.B.) and by the President’s Future Leaders in Research Scholarship (C.E.R. and G.M.).Peer reviewe
    corecore