934 research outputs found

    Quantum optical realization of arbitrary linear transformations allowing for loss and gain

    Full text link
    Unitary transformations are routinely modeled and implemented in the field of quantum optics. In contrast, nonunitary transformations that can involve loss and gain require a different approach. In this theory work, we present a universal method to deal with nonunitary networks. An input to the method is an arbitrary linear transformation matrix of optical modes that does not need to adhere to bosonic commutation relations. The method constructs a transformation that includes the network of interest and accounts for full quantum optical effects related to loss and gain. Furthermore, through a decomposition in terms of simple building blocks it provides a step-by-step implementation recipe, in a manner similar to the decomposition by Reck et al. [Reck et al., Phys. Rev. Lett. 73, 58 (1994)] but applicable to nonunitary transformations. Applications of the method include the implementation of positive-operator-valued measures and the design of probabilistic optical quantum information protocols.Comment: We also provide a MATLAB code for numerically implementing the full decomposition on GitHub, at https://github.com/NoraTischler/QuantOpt-linear-transformation-decompositio

    On the dynamic toroidal multipoles from localized electric current distributions

    Get PDF
    We analyze the dynamic toroidal multipoles and prove that they do not have an independent physical meaning with respect to their interaction with electromagnetic waves. We analytically show how the split into electric and toroidal parts causes the appearance of non-radiative components in each of the two parts. These non-radiative components, which cancel each other when both parts are summed, preclude the separate determination of each part by means of measurements of the radiation from the source or of its coupling to external electromagnetic waves. In other words, there is no toroidal radiation or independent toroidal electromagnetic coupling. The formal meaning of the toroidal multipoles is clear in our derivations. They are the higher order terms of an expansion of the multipolar coefficients of electric parity with respect to the electromagnetic size of the source

    Objects of maximum electromagnetic chirality

    Get PDF
    We introduce a definition of the electromagnetic chirality of an object and show that it has an upper bound. Reciprocal objects attain the upper bound if and only if they are transparent for all the fields of one polarization handedness (helicity). Additionally, electromagnetic duality symmetry, i.e., helicity preservation upon interaction, turns out to be a necessary condition for reciprocal objects to attain the upper bound. We use these results to provide requirements for the design of such extremal objects. The requirements can be formulated as constraints on the polarizability tensors for dipolar objects or on the material constitutive relations for continuous media. We also outline two applications for objects of maximum electromagnetic chirality: a twofold resonantly enhanced and background-free circular dichroism measurement setup, and angle-independent helicity filtering glasses. Finally, we use the theoretically obtained requirements to guide the design of a specific structure, which we then analyze numerically and discuss its performance with respect to maximal electromagnetic chirality.Comment: This version contains an example of how to use the theoretically derived constraints for designing realistic structures. It also contains a discussion related to the optical chirality densit

    Optically assisted trapping with high-permittivity dielectric rings: Towards optical aerosol filtration

    Full text link
    Controlling the transport, trapping, and filtering of nanoparticles is important for many applications. By virtue of their weak response to gravity and their thermal motion, various physical mechanisms can be exploited for such operations on nanoparticles. However, the manipulation based on optical forces is potentially most appealing since it constitutes a highly deterministic approach. Plasmonic nanostructures have been suggested for this purpose, but they possess the disadvantages of locally generating heat and trapping the nanoparticles directly on surface. Here, we propose the use of dielectric rings made of high permittivity materials for trapping nanoparticles. Thanks to their ability to strongly localize the field in space, nanoparticles can be trapped without contact. We use a semi-analytical method to study the ability of these rings to trap nanoparticles. Results are supported by full-wave simulations. Application of the trapping concept to nanoparticle filtration is suggested.Comment: 5 figure

    Dual and chiral objects for optical activity in general scattering directions

    Full text link
    Optically active artificial structures have attracted tremendous research attention. Such structures must meet two requirements: Lack of spatial inversion symmetries and, a condition usually not explicitly considered, the structure shall preserve the helicity of light, which implies that there must be a vanishing coupling between the states of opposite polarization handedness among incident and scattered plane waves. Here, we put forward and demonstrate that a unit cell made from chiraly arranged electromagnetically dual scatterers serves exactly this purpose. We prove this by demonstrating optical activity of such unit cell in general scattering directions.Comment: This document is the unedited Authors version of a Submitted Work that was subsequently accepted for publication in ACS Photonics, copyright American Chemical Society after peer review. To access the final edited and published work see http://pubs.acs.org/articlesonrequest/AOR-3yvzAibCIU6wdTuzx9c
    • …
    corecore