6,680 research outputs found

    High mass X-ray binaries in the NIRorbital solutions of two highly obscured systems

    Get PDF
    The maximum mass of a neutron star (NS) is poorly defined. Theoretical attempts to define this mass have thus far been unsuccessful. Observational results currently provide the only means of narrowing this mass range down. Eclipsing X-ray binary (XRB) pulsar systems are the only interacting binaries in which the mass of the NS may be measured directly. Only 10 such systems are known to exist, 6 of which have yielded NS masses in the range 1.06 - 1.86 M⊙_{\odot}.We present the first orbital solutions of two further eclipsing systems, OAO 1657-415 and EXO 1722-363, whose donor stars have only recently been identified. Using observations obtained using the VLT/ISAAC NIR spectrograph, our initial work was concerned with providing an accurate spectral classification of the two counterpart stars, leading to a consistent explanation of the mechanism for spin period evolution of OAO 1657-415. Calculating radial velocities allowed orbital solutions for both systems to be computed. These are the first accurate determinations of the NS and counterpart masses in XRB pulsar systems to be made employing NIR spectroscopy.Comment: 5 pages, 3 figures, contribution to the proceedings of "The multi-wavelength view of hot, massive stars", 39th Li`ege Int. Astroph. Coll., 12-16 July 201

    Resolution-enhanced Mapping Spectrometer

    Get PDF
    A familiar mapping spectrometer implementation utilizes two dimensional detector arrays with spectral dispersion along one direction and spatial along the other. Spectral images are formed by spatially scanning across the scene (i.e., push-broom scanning). For imaging grating and prism spectrometers, the slit is perpendicular to the spatial scan direction. For spectrometers utilizing linearly variable focal-plane-mounted filters the spatial scan direction is perpendicular to the direction of spectral variation. These spectrometers share the common limitation that the number of spectral resolution elements is given by the number of pixels along the spectral (or dispersive) direction. Resolution enhancement by first passing the light input to the spectrometer through a scanned etalon or Michelson is discussed. Thus, while a detector element is scanned through a spatial resolution element of the scene, it is also temporally sampled. The analysis for all the pixels in the dispersive direction is addressed. Several specific examples are discussed. The alternate use of a Michelson for the same enhancement purpose is also discussed. Suitable for weight constrained deep space missions, hardware systems were developed including actuators, sensor, and electronics such that low-resolution etalons with performance required for implementation would weigh less than one pound

    Extracting nucleon strange and anapole form factors from world data

    Get PDF
    The complete world set of parity violating electron scattering data up to Q^2~0.3 GeV^2 is analysed. We extract the current experimental determination of the strange electric and magnetic form factors of the proton, as well as the weak axial form factors of the proton and neutron, at Q^2 = 0.1 GeV^2. Within experimental uncertainties, we find that the strange form factors are consistent with zero, as are the anapole contributions to the axial form factors. Nevertheless, the correlation between the strange and anapole contributions suggest that there is only a small probability that these form factors all vanish simultaneously.Comment: 4 pages, 3 figs; v2: version to appear in PR

    Environmental effects in the third moment of voltage fluctuations in a tunnel junction

    Full text link
    We present the first measurements of the third moment of the voltage fluctuations in a conductor. This technique can provide new and complementary information on the electronic transport in conducting systems. The measurement was performed on non-superconducting tunnel junctions as a function of voltage bias, for various temperatures and bandwidths up to 1GHz. The data demonstrate the significant effect of the electromagnetic environment of the sample.Comment: Major revision. More experimental results. New interpretation. 4 pages, 3 figure

    The Interstellar Medium of IRAS 08572+3915 NW: H3+ and Warm High Velocity CO

    Full text link
    We confirm the first detection of the molecular ion H3+ in an extragalactic object, the highly obscured ultraluminous galaxy IRAS 08572+3915 NW. We also have detected absorption lines of the fundamental band of CO in this galaxy. The CO absorption consists of a cold component close to the systemic velocity and warm, highly blueshifted and redshifted components. The warm blueshifted component is remarkably strong and broad and extends at least to -350 km/s. Some analogies can be drawn between the H3+ and cold CO in IRAS08572+3915 NW and the same species seen toward the Galactic center. The profiles of the warm CO components are not those expected from a dusty torus of the type thought to obscure active galactic nuclei. They are probably formed close to the dust continuum surface near the buried and active nucleus and are probably associated with an unusual and energetic event there.Comment: 21 pages, 4 postscript figures, accepted by Ap

    Competition between magnetic field dependent band structure and coherent backscattering in multiwall carbon nanotubes

    Full text link
    Magnetotransport measurements in large diameter multiwall carbon nanotubes (20-40 nm) demonstrate the competition of a magnetic-field dependent bandstructure and Altshuler-Aronov-Spivak oscillations. By means of an efficient capacitive coupling to a backgate electrode, the magnetoconductance oscillations are explored as a function of Fermi level shift. Changing the magnetic field orientation with respect to the tube axis and by ensemble averaging, allows to identify the contributions of different Aharonov-Bohm phases. The results are in qualitative agreement with numerical calculations of the band structure and the conductance.Comment: 4 figures, 5 page

    A Morphological and Multicolor Survey for Faint QSOs in the Groth-Westphal Strip

    Get PDF
    Quasars representative of the populous faint end of the luminosity function are frustratingly dim with m~24 at intermediate redshift; moreover groundbased surveys for such faint QSOs suffer substantial morphological contamination by compact galaxies having similar colors. In order to establish a more reliable ultrafaint QSO sample, we used the APO 3.5-m telescope to take deep groundbased U-band CCD images in fields previously imaged in V,I with WFPC2/HST. Our approach hence combines multicolor photometry with the 0.1" spatial resolution of HST, to establish a morphological and multicolor survey for QSOs extending about 2 magnitudes fainter than most extant groundbased surveys. We present results for the "Groth-Westphal Strip", in which we identify 10 high likelihood UV-excess candidates having stellar or stellar-nucleus+galaxy morphology in WFPC2. For m(606)<24.0 (roughly B<24.5) the surface density of such QSO candidates is 420 (+180,-130) per square degree, or a surface density of 290 (+160,-110) per square degree with an additional V-I cut that may further exclude compact emission line galaxies. Even pending confirming spectroscopy, the observed surface density of QSO candidates is already low enough to yield interesting comparisons: our measures agree extremely well with the predictions of several recent luminosity function models.Comment: 29 pages including 6 tables and 7 figures. As accepted for publication in The Astronomical Journal (minor revisions

    Quantum partition noise of photo-created electron-hole pairs

    Full text link
    We show experimentally that even when no bias voltage is applied to a quantum conductor, the electronic quantum partition noise can be investigated using GHz radiofrequency irradiation of a reservoir. Using a Quantum Point Contact configuration as the ballistic conductor we are able to make an accurate determination of the partition noise Fano factor resulting from the photo-assisted shot noise. Applying both voltage bias and rf irradiation we are able to make a definitive quantitative test of the scattering theory of photo-assisted shot noise.Comment: 4 pages, 4 figure

    A Deep Multicolor Survey. VI. Near-Infrared Observations, Selection Effects, and Number Counts

    Get PDF
    I present near-infrared J (1.25um), H (1.65um), and K (2.2um) imaging observations of 185 square arcminutes in 21 high galactic latitude fields. These observations reach limiting magnitudes of J ~ 21 mag, H ~ 20 mag and K ~ 18.5 mag. The detection efficiency, photometric accuracy and selection biases as a function of integrated object brightness, size, and profile shape are quantified in detail. I evaluate several popular methods for measuring the integrated light of faint galaxies and show that only aperture magnitudes provide an unbiased measure of the integrated light that is independent of apparent magnitude. These J, H, and K counts and near-infrared colors are in best agreement with passive galaxy formation models with at most a small amount of merging (for Omega_M = 0.3, Omega_Lambda = 0.7).Comment: AJ Accepted (Feb 2001). 28 pages, 7 embedded ps figures, AASTEX5. Minor changes to submitted version. Also available at http://www.astronomy.ohio-state.edu/~martini/pubs
    • …
    corecore