127 research outputs found

    Evaluation and modeling of synergy to pheromone and plant kairomone in American palm weevil

    Get PDF
    Background: Many behavioral responses to odors are synergistic, particularly in insects. In beetles, synergy often involves a pheromone and a plant odor, and pest management relies on them for the use of combined lures. To investigate olfactory synergy mechanisms, we need to distinguish synergistic effects from additive ones, when all components of the mixture are active. Results: As versatile tools and procedures were not available, we developed a bioassay, and a mathematical model to evaluate synergy between aggregation pheromone (P) and host plant odors (kairomone: K) in the American palm weevil, a pest insect showing enhanced responses to P+K mixtures. Responses to synthetic P and natural K were obtained using a 4-arm olfactometer coupled to a controlled volatile delivery system. We showed that: (1) Response thresholds were ca. 10 and 100 pg/s respectively for P and K. (2) Both stimuli induced similar maximum response. (3) Increasing the dose decreased the response for P to the point of repellence and maintained a maximum response for K. (4) P and K were synergistic over a 100-fold range of doses with experimental responses to P+K mixtures greater than the ones predicted assuming additive effects. Responses close to maximum were associated with the mixture amounts below the response threshold for both P and K. Conclusion: These results confirm the role of olfactory synergy in optimizing active host-plant localization by phytophagous insects. Our evaluation procedure can be generalized to test synergistic or inhibitory integrated responses of various odor mixtures for various insects

    Physicochemical characterization and study of molar mass of industrial gelatins by AsFlFFF-UV/MALS and chemometric approach

    Get PDF
    Industrial gelatins have different physicochemical properties that mainly depend of the raw materials origin and the extraction conditions. These properties are closely related to the molar mass distribution of these gelatins. Several methods exist to characterize molar mass distribution of polymer, including the Asymmetrical Flow Field Flow Fractionation method. The goal of this study is to analyze the relationship between physicochemical properties and the gelatins molar mass distribution obtained by Asymmetrical Flow Field Flow Fractionation. In this study, 49 gelatins samples extracted from pig skin are characterized in terms of gel strength and viscosity and their molar mass distribution are analyzed by Asymmetrical Flow Field Flow Fractionation coupled to an Ultraviolet and Multi Angle Light Scattering detector. This analytical method is an interesting tool for studying, simultaneously, the primary chains and the high-molar-mass fraction corresponding to the polymer chains. Correlation analysis between molar mass distribution data from the different fractions highlights the importance of high molar mass polymer chains to explain the gel strength and viscosity of gelatins. These results are confirmed by an additional chemometric approach based on the UV absorbance of gelatin fractograms to predict gel strength (r2Cal = 0.85) and viscosity (r2Cal = 0.79)

    Wheat germ in vitro translation to produce one of the most toxic sodium channel specific toxins

    Get PDF
    Envenoming following scorpion sting is a common emergency in many parts of the world. During scorpion envenoming, highly toxic small polypeptides of the venom diffuse rapidly within the victim causing serious medical problems. The exploration of toxin structure-function relationship would benefit from the generation of soluble recombinant scorpion toxins in Escherichia coli. We developed an in vitro wheat germ translation system for the expression of the highly toxic Aah (Androctonus australis hector)II protein that requires the proper formation of four disulphide bonds. Soluble, recombinant N-terminal GST (glutathione S-transferase)-tagged AahII toxin is obtained in this in vitro translation system. After proteolytic removal of the GST-tag, purified rAahII (recombinant AahII) toxin, which contains two extra amino acids at its N terminal relative to the native AahII, is highly toxic after i.c.v. (intracerebroventricular) injection in Swiss mice. An LD50 (median lethal dose)-value of 10 ng (or 1.33 pmol), close to that of the native toxin (LD50 of 3 ng) indicates that the wheat germ in vitro translation system produces properly folded and biological active rAahII. In addition, NbAahII10 (Androctonus australis hector nanobody 10), a camel single domain antibody fragment, raised against the native AahII toxin, recognizes its cognate conformational epitope on the recombinant toxin and neutralizes the toxicity of purified rAahII upon injection in mice

    The GRAVITY+ Project: Towards All-sky, Faint-Science, High-Contrast Near-Infrared Interferometry at the VLTI

    Full text link
    The GRAVITY instrument has been revolutionary for near-infrared interferometry by pushing sensitivity and precision to previously unknown limits. With the upgrade of GRAVITY and the Very Large Telescope Interferometer (VLTI) in GRAVITY+, these limits will be pushed even further, with vastly improved sky coverage, as well as faint-science and high-contrast capabilities. This upgrade includes the implementation of wide-field off-axis fringe-tracking, new adaptive optics systems on all Unit Telescopes, and laser guide stars in an upgraded facility. GRAVITY+ will open up the sky to the measurement of black hole masses across cosmic time in hundreds of active galactic nuclei, use the faint stars in the Galactic centre to probe General Relativity, and enable the characterisation of dozens of young exoplanets to study their formation, bearing the promise of another scientific revolution to come at the VLTI.Comment: Published in the ESO Messenge

    MAORY for ELT: preliminary design overview

    Get PDF
    MAORY is one of the approved instruments for the European Extremely Large Telescope. It is an adaptive optics module, enabling high-angular resolution observations in the near infrared by real-time compensation of the wavefront distortions due to atmospheric turbulence and other disturbances such as wind action on the telescope. An overview of the instrument design is given in this paper
    • 

    corecore