182 research outputs found
Assessment of the validity of intermolecular potential models used in molecular dynamics simulations by extended x-ray absorption fine structure spectroscopy:A case study of Sr2+ in methanol solution
Molecular dynamics simulations have been carried out for Sr2+ in methanol using different Sr2+ Lennard-Jones parameters and methanol models. X-ray absorption fine structure. (EXAFS) spectroscopy has been employed to assess the reliability of the ion-ion and ion-methanol potential functions used in the simulations. Radial distribution functions of Sr2+ in methanol have been. calculated for each simulation and compared with the EXAFS experimental data. This procedure has allowed the determinations of reliable Sr2+-methanol models which have been used in longer simulations providing an accurate description of the dynamic and structural properties of this system
Structure, dynamics, and function of the monooxygenase P450 BM-3: insights from computer simulations studies
The monooxygenase P450 BM-3 is a NADPH-dependent fatty acid hydroxylase enzyme isolated from soil bacterium Bacillus megaterium. As a pivotal member of cytochrome P450 superfamily, it has been intensely studied for the comprehension of structure-dynamics-function relationships in this class of enzymes. In addition, due to its peculiar properties, it is also a promising enzyme for biochemical and biomedical applications. However, despite the efforts, the full understanding of the enzyme structure and dynamics is not yet achieved. Computational studies, particularly molecular dynamics (MD) simulations, have importantly contributed to this endeavor by providing new insights at an atomic level regarding the correlations between structure, dynamics, and function of the protein. This topical review summarizes computational studies based on MD simulations of the cytochrome P450 BM-3 and gives an outlook on future directions
pFlexAna: detecting conformational changes in remotely related proteins
The pFlexAna (protein flexibility analyzer) web server detects and displays conformational changes in remotely related proteins, without relying on sequence homology. To do so, it first applies a reliable statistical test to align core protein fragments that are structurally similar and then clusters these aligned fragment pairs into ‘super-alignments’, according to the similarity of geometric transformations that align them. The result is that the dominant conformational changes occur between the clusters, while the smaller conformational changes occur within a cluster. pFlexAna is available at http://bigbird.comp.nus.edu.sg/pfa2/
“Conjugate Channeling” Effect in Dislocation Core Diffusion: Carbon Transport in Dislocated BCC Iron
Dislocation pipe diffusion seems to be a well-established phenomenon. Here we demonstrate an unexpected effect, that the migration of interstitials such as carbon in iron may be accelerated not in the dislocation line direction [symbol], but in a conjugate diffusion direction. This accelerated random walk arises from a simple crystallographic channeling effect. [c] is a function of the Burgers vector b, but not [symbol], thus a dislocation loop possesses the same everywhere. Using molecular dynamics and accelerated dynamics simulations, we further show that such dislocation-core-coupled carbon diffusion in iron has temperature-dependent activation enthalpy like a fragile glass. The 71° mixed dislocation is the only case in which we see straightforward pipe diffusion that does not depend on dislocation mobility.National Science Foundation (U.S.) (Grant No. CMMI-0728069)National Science Foundation (U.S.) (Grant No. DMR-1008104)National Science Foundation (U.S.) (Grant No. DMR-1120901
A Method for Structure–Activity Analysis of Quorum-Sensing Signaling Peptides from Naturally Transformable Streptococci
Many species of streptococci secrete and use a competence-stimulating peptide (CSP) to initiate quorum sensing for induction of genetic competence, bacteriocin production, and other activities. These signaling molecules are small, unmodified peptides that induce powerful strain-specific activity at nano-molar concentrations. This feature has provided an excellent opportunity to explore their structure–function relationships. However, CSP variants have also been identified in many species, and each specifically activates its cognate receptor. How such minor changes dramatically affect the specificity of these peptides remains unclear. Structure–activity analysis of these peptides may provide clues for understanding the specificity of signaling peptide–receptor interactions. Here, we use the Streptococcus mutans CSP as an example to describe methods of analyzing its structure–activity relationship. The methods described here may provide a platform for studying quorum-sensing signaling peptides of other naturally transformable streptococci
Methionine Sulfoxides on Prion Protein Helix-3 Switch on the α-Fold Destabilization Required for Conversion
BACKGROUND: The conversion of the cellular prion protein (PrP(C)) into the infectious form (PrP(Sc)) is the key event in prion induced neurodegenerations. This process is believed to involve a multi-step conformational transition from an alpha-helical (PrP(C)) form to a beta-sheet-rich (PrP(Sc)) state. In addition to the conformational difference, PrP(Sc) exhibits as covalent signature the sulfoxidation of M213. To investigate whether such modification may play a role in the misfolding process we have studied the impact of methionine oxidation on the dynamics and energetics of the HuPrP(125-229) alpha-fold. METHODOLOGY/PRINCIPAL FINDINGS: Using molecular dynamics simulation, essential dynamics, correlated motions and signal propagation analysis, we have found that substitution of the sulfur atom of M213 by a sulfoxide group impacts on the stability of the native state increasing the flexibility of regions preceding the site of the modification and perturbing the network of stabilizing interactions. Together, these changes favor the population of alternative states which maybe essential in the productive pathway of the pathogenic conversion. These changes are also observed when the sulfoxidation is placed at M206 and at both, M206 and M213. CONCLUSIONS/SIGNIFICANCE: Our results suggest that the sulfoxidation of Helix-3 methionines might be the switch for triggering the initial alpha-fold destabilization required for the productive pathogenic conversion
Hydrogen-Bond Driven Loop-Closure Kinetics in Unfolded Polypeptide Chains
Characterization of the length dependence of end-to-end loop-closure kinetics in unfolded polypeptide chains provides an understanding of early steps in protein folding. Here, loop-closure in poly-glycine-serine peptides is investigated by combining single-molecule fluorescence spectroscopy with molecular dynamics simulation. For chains containing more than 10 peptide bonds loop-closing rate constants on the 20–100 nanosecond time range exhibit a power-law length dependence. However, this scaling breaks down for shorter peptides, which exhibit slower kinetics arising from a perturbation induced by the dye reporter system used in the experimental setup. The loop-closure kinetics in the longer peptides is found to be determined by the formation of intra-peptide hydrogen bonds and transient β-sheet structure, that accelerate the search for contacts among residues distant in sequence relative to the case of a polypeptide chain in which hydrogen bonds cannot form. Hydrogen-bond-driven polypeptide-chain collapse in unfolded peptides under physiological conditions found here is not only consistent with hierarchical models of protein folding, that highlights the importance of secondary structure formation early in the folding process, but is also shown to speed up the search for productive folding events
Role of Histone Tails in Structural Stability of the Nucleosome
Histone tails play an important role in nucleosome structure and dynamics. Here we investigate the effect of truncation of histone tails H3, H4, H2A and H2B on nucleosome structure with 100 ns all-atom molecular dynamics simulations. Tail domains of H3 and H2B show propensity of -helics formation during the intact nucleosome simulation. On truncation of H4 or H2B tails no structural change occurs in histones. However, H3 or H2A tail truncation results in structural alterations in the histone core domain, and in both the cases the structural change occurs in the H2A3 domain. We also find that the contacts between the histone H2A C terminal docking domain and surrounding residues are destabilized upon H3 tail truncation. The relation between the present observations and corresponding experiments is discussed
- …