18 research outputs found

    Examining the immune signatures of SARS-CoV-2 infection in pregnancy and the impact on neurodevelopment: Protocol of the SIGNATURE longitudinal study.

    Full text link
    The COVID-19 pandemic represents a valuable opportunity to carry out cohort studies that allow us to advance our knowledge on pathophysiological mechanisms of neuropsychiatric diseases. One of these opportunities is the study of the relationships between inflammation, brain development and an increased risk of suffering neuropsychiatric disorders. Based on the hypothesis that neuroinflammation during early stages of life is associated with neurodevelopmental disorders and confers a greater risk of developing neuropsychiatric disorders, we propose a cohort study of SARS-CoV-2-infected pregnant women and their newborns. The main objective of SIGNATURE project is to explore how the presence of prenatal SARS-CoV-2 infection and other non-infectious stressors generates an abnormal inflammatory activity in the newborn. The cohort of women during the COVID-19 pandemic will be psychological and biological monitored during their pregnancy, delivery, childbirth and postpartum. The biological information of the umbilical cord (foetus blood) and peripheral blood from the mother will be obtained after childbirth. These samples and the clinical characterisation of the cohort of mothers and newborns, are tremendously valuable at this time. This is a protocol report and no analyses have been conducted yet, being currently at, our study is in the recruitment process step. At the time of this publication, we have identified 1,060 SARS-CoV-2 infected mothers and all have already given birth. From the total of identified mothers, we have recruited 537 SARS-COV-2 infected women and all of them have completed the mental health assessment during pregnancy. We have collected biological samples from 119 mothers and babies. Additionally, we have recruited 390 non-infected pregnant women

    Geodivulgar: Geología y Sociedad

    Get PDF
    Con el lema “Geología para todos” el proyecto Geodivulgar: Geología y Sociedad apuesta por la divulgación de la Geología a todo tipo de público, incidiendo en la importancia de realizar simultáneamente una acción de integración social entre estudiantes y profesores de centros universitarios, de enseñanza infantil, primaria, de educación especial y un acercamiento con público con diversidad funcional

    Examining the immune signatures of SARS-CoV-2 infection in pregnancy and the impact on neurodevelopment: Protocol of the SIGNATURE longitudinal study

    Get PDF
    The COVID-19 pandemic represents a valuable opportunity to carry out cohort studies that allow us to advance our knowledge on pathophysiological mechanisms of neuropsychiatric diseases. One of these opportunities is the study of the relationships between inflammation, brain development and an increased risk of suffering neuropsychiatric disorders. Based on the hypothesis that neuroinflammation during early stages of life is associated with neurodevelopmental disorders and confers a greater risk of developing neuropsychiatric disorders, we propose a cohort study of SARS-CoV-2-infected pregnant women and their newborns. The main objective of SIGNATURE project is to explore how the presence of prenatal SARS-CoV-2 infection and other non-infectious stressors generates an abnormal inflammatory activity in the newborn. The cohort of women during the COVID-19 pandemic will be psychological and biological monitored during their pregnancy, delivery, childbirth and postpartum. The biological information of the umbilical cord (foetus blood) and peripheral blood from the mother will be obtained after childbirth. These samples and the clinical characterisation of the cohort of mothers and newborns, are tremendously valuable at this time. This is a protocol report and no analyses have been conducted yet, being currently at, our study is in the recruitment process step. At the time of this publication, we have identified 1,060 SARS-CoV-2 infected mothers and all have already given birth. From the total of identified mothers, we have recruited 537 SARS-COV-2 infected women and all of them have completed the mental health assessment during pregnancy. We have collected biological samples from 119 mothers and babies. Additionally, we have recruited 390 non-infected pregnant women.This work has received support from the Fundación Alicia Koplowitz to realize the epigenetic wide association study and to the clinical assessment to the children. This work has also received public support from the Consejería de Salud y Familias para la financiación de la investigación, desarrollo e innovación (i + d + i) biomédica y en ciencias de la salud en Andalucía (CSyF 2021 - FEDER). Grant Grant number PECOVID- 0195-2020. Convocatoria financiada con Fondo Europeo de Desarrollo Regional (FEDER) al 80% dentro del Programa Operativo de Andalucía FEDER 2014-2020. Andalucía se mueve con Europa. NG-T received payment under Rio Hortega contract CM20-00015 with the Carlos III Health Institute.Peer reviewe

    GEODIVULGAR: Geología y Sociedad

    Get PDF
    Fac. de Ciencias GeológicasFALSEsubmitte

    Phytochemical-Based Nanomaterials against Antibiotic-Resistant Bacteria: An Updated Review

    No full text
    Antibiotic-resistant bacteria (ARB) is a growing global health threat, leading to the search for alternative strategies to combat bacterial infections. Phytochemicals, which are naturally occurring compounds found in plants, have shown potential as antimicrobial agents; however, therapy with these agents has certain limitations. The use of nanotechnology combined with antibacterial phytochemicals could help achieve greater antibacterial capacity against ARB by providing improved mechanical, physicochemical, biopharmaceutical, bioavailability, morphological or release properties. This review aims to provide an updated overview of the current state of research on the use of phytochemical-based nanomaterials for the treatment against ARB, with a special focus on polymeric nanofibers and nanoparticles. The review discusses the various types of phytochemicals that have been incorporated into different nanomaterials, the methods used to synthesize these materials, and the results of studies evaluating their antimicrobial activity. The challenges and limitations of using phytochemical-based nanomaterials, as well as future directions for research in this field, are also considered here. Overall, this review highlights the potential of phytochemical-based nanomaterials as a promising strategy for the treatment against ARB, but also stresses the need for further studies to fully understand their mechanisms of action and optimize their use in clinical settings

    Fish Skin Mucus Extracts: An Underexplored Source of Antimicrobial Agents

    No full text
    The slow discovery of new antibiotics combined with the alarming emergence of antibiotic-resistant bacteria underscores the need for alternative treatments. In this regard, fish skin mucus has been demonstrated to contain a diverse array of bioactive molecules with antimicrobial properties, including peptides, proteins, and other metabolites. This review aims to provide an overview of the antimicrobial molecules found in fish skin mucus and its reported in vitro antimicrobial capacity against bacteria, fungi, and viruses. Additionally, the different methods of mucus extraction, which can be grouped as aqueous, organic, and acidic extractions, are presented. Finally, omic techniques (genomics, transcriptomics, proteomics, metabolomics, and multiomics) are described as key tools for the identification and isolation of new antimicrobial compounds. Overall, this study provides valuable insight into the potential of fish skin mucus as a promising source for the discovery of new antimicrobial agents

    Update on the Inactivation Procedures for the Vaccine Development Prospects of a New Highly Virulent RGNNV Isolate

    No full text
    Viral nervous necrosis (VNN) caused by the nervous necrosis virus (NNV) affects a broad range of primarily marine fish species, with mass mortality rates often seen among larvae and juveniles. Its genetic diversification may hinder the effective implementation of preventive measures such as vaccines. The present study describes different inactivation procedures for developing an inactivated vaccine against a new NNV isolate confirmed to possess deadly effects upon the European seabass (Dicentrarchus labrax), an important Mediterranean farmed fish species that is highly susceptible to this disease. First, an NNV isolate from seabass adults diagnosed with VNN was rescued and the sequences of its two genome segments (RNA1 and RNA2) were classified into the red-spotted grouper NNV (RGNNV) genotype, closely clustering to the highly pathogenic 283.2009 isolate. The testing of different inactivation procedures revealed that the virus particles of this isolate showed a marked resistance to heat (for at least 60 °C for 120 min with and without 1% BSA) but that they were fully inactivated by 3 mJ/cm2 UV-C irradiation and 24 h 0.2% formalin treatment, which stood out as promising NNV-inactivation procedures for potential vaccine candidates. Therefore, these procedures are feasible, effective, and rapid response strategies for VNN control in aquaculture

    Study of toxicity of potential immunomodulating compounds for the development of oral metabolic therapies

    No full text
    Poster.-- 4th Congress of the International Society of Fish & Shellfish Immunology, December 12-15, 2022, Bode, NorwayThe close relationship between the immune system and metabolism can be used for the development of diets and oral metabolic therapies as immune modulating strategies in infectious diseases, which can cause significant economic losses in aquaculture. The study of the viable concentrations of potential immunomodulating compounds is a key issue to be studied for their adequate incorporation in functional diets. It has been reported that there are metabolites such as 25-hydroxycholesterol, palmitic acid and tryptophan that modulate the immune system. In this work, toxicity assays were carried out in the very sensitive animal model of embryo zebrafish (Danio rerio), which also allows the evaluation of the effects on larval morphology. The metabolites cholesterol, palmitic acid, tryptophan, acetyl-L-carnitine, as well as the polymers polyethylene oxyde (PEO) and poly(methyl vinyl ether-alt-maleic acid) (PMVEMA) (as potential future nanocarriers in nanofiber scaffolds) were evaluated. Zebrafish eggs were treated on the day of fertilization and their viability, hatching and development were observed by optical microscopy for 5 days post fertilization. With this data, Kaplan-Meier survival plots were also obtained. We observed that there were required concentrations lower than 0.1 mg/g high molecular weight PMVEMA, 0.05 mg/g low molecular weight PMVEMA, 1 mg/g low molecular weight PEO, 0.5 mg/g high molecular weight PEO, 0.1 mg/g palmitic acid, 0.01 mg/g cholesterol, 0.1 mg/g acetyl-L-carnitine and 0.5 mg/g tryptophan for reaching viability values like those of the non-treated groups. In conclusion, it has been narrowed these compounds for their biological implementationFunding sources RTI2018-101969-J-I00 (MCIN/AEI/ 10.13039/501100011033 and "ERDF A way of making Europe") and MetDisFish (EMFAF and MAPA)N

    Viricidal Activity of Thermoplastic Polyurethane Materials with Silver Nanoparticles

    No full text
    The use of diverse Ag-based nanoparticulated forms has shown promising results in controlling viral propagation. In this study, a commercial nanomaterial consisting of ceramic-coated silver nanoparticles (AgNPs) was incorporated into thermoplastic polyurethane (TPU) plates using an industrial protocol, and the surface composition, ion-release dynamics and viricidal properties were studied. The surface characterization by FESEM-EDX revealed that the molar composition of the ceramic material was 5.5 P:3.3 Mg:Al and facilitated the identification of the embedded AgNPs (54.4 ± 24.9 nm). As determined by ICPMS, the release rates from the AgNP–TPU into aqueous solvents were 4 ppm/h for Ag and Al, and 28.4 ppm/h for Mg ions. Regarding the biological assays, the AgNP–TPU material did not induce significant cytotoxicity in the cell lines employed. Its viricidal activity was characterized, based on ISO 21702:2019, using the Spring viraemia of carp virus (SVCV), and then tested against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The results demonstrated that AgNP–TPU materials exhibited significant (75%) and direct antiviral activity against SVCV virions in a time- and temperature-dependent manner. Similar inhibition levels were found against SARS-CoV-2. These findings show the potential of AgNP–TPU-based materials as a supporting strategy to control viral spread

    Hallmarks and Biomarkers of Skin Senescence: An Updated Review of Skin Senotherapeutics

    Get PDF
    Aging is a complex process characterized by an ongoing decline in physiological functions, leading to degenerative diseases and an increased probability of death. Cellular senescence has been typically considered as an anti-proliferative process; however, the chronic accumulation of senescent cells contributes to tissue dysfunction and aging. In this review, we discuss some of the most important hallmarks and biomarkers of cellular senescence with a special focus on skin biomarkers, reactive oxygen species (ROS), and senotherapeutic strategies to eliminate or prevent senescence. Although most of them are not exclusive to senescence, the expression of the senescence-associated beta-galactosidase (SA-β-gal) enzyme seems to be the most reliable biomarker for distinguishing senescent cells from those arrested in the cell cycle. The presence of a stable DNA damage response (DDR) and the accumulation of senescence-associated secretory phenotype (SASP) mediators and ROS are the most representative hallmarks for senescence. Senotherapeutics based on natural compounds such as quercetin, naringenin, and apigenin have shown promising results regarding SASP reduction. These compounds seem to prevent the accumulation of senescent cells, most likely through the inhibition of pro-survival signaling pathways. Although studies are still required to verify their short- and long-term effects, these therapies may be an effective strategy for skin aging
    corecore