625 research outputs found

    Investigating foot morphology in rock climbing mammals: inspiration for biomimetic climbing shoes

    Get PDF
    The sporting goods sector can serve as a proving ground for new technologies. We propose that climbing shoes are an excellent case study for showcasing a systematic approach to bio-inspired design. Foot adaptations to climbing have been described before in some animals and have even been incorporated into bio-inspired products. However, there has not yet been a systematic description of climbing adaptations in mammals, and especially in rock climbing species. We present a description of foot morphology in mammals and compare rock climbing species to those with other locomotion types. Our results show that rock climbing species in our sample had fewer digits and larger anterior pads than arboreal species. Rock climbing species often had hooves or, if they had foot pads, these were relatively smooth. These examples look a bit like current climbing shoe designs, perhaps suggesting convergent evolution. However, there was also variation, with rock climbing species having pads varying in shape, placement and texture. Much of this variation is likely to be dependent on the relatedness of species, with those that are more related having more similar feet. We suggest that incorporation of novel textures and compliant pads might be an interesting focus for future climbing shoe designs

    Demonstrating a measurement protocol for studying comparative whisker movements with implications for the evolution of behaviour

    Get PDF
    Background Studying natural, complex behaviours over a range of different species provides insights into the evolution of the brain and behaviour. Whisker movements reveal complex behaviours; however, there does not yet exist a protocol that is able to capture whisker movements and behaviours in a range of different species. New method We develop a new protocol and make recommendations for measuring comparative whisker movements and behaviours. Using two set-ups – an enclosure camera set-up and a high-speed video set-up - we capture and measure the whisker movements of sixteen different captive mammal species from four different animal collections. Results We demonstrate the ability to describe whisker movements and behaviours across a wide range of mammalian species. We describe whisker movements in European hedgehog, Cape porcupine, domestic rabbit, domestic ferret, weasel, European otter and red fox for the first time. We observe whisker movements in all the species we tested, although movement, positions and behaviours vary in a species-specific way. Comparison with existing method(s) The high-speed video set-up is based on the protocols of previous studies. The addition of an enclosure video set-up is entirely new, and allows us to include more species, especially large and shy species that cannot be moved into a high-speed filming arena. Conclusions We make recommendations for comparative whisker behaviour studies, particularly incorporating individual and species-specific considerations. We believe that flexible, comparative behavioural protocols have wide-ranging applications, specifically to better understand links between the brain and complex behaviours

    Anatomy of bristles on the nares and rictus of western barn owls (Tyto alba)

    Get PDF
    Many nocturnal avian species, such as Strigiformes, Caprimulgiformes and Apterygiformes, have sensitive vibrotactile bristles on their upper bill, especially on their rictus. The anatomy of these bristles can vary, especially in terms of sensitivity (Herbst corpuscle number), bristle length and bristle number. This variation is thought to be associated with foraging – such that diurnal, open foragers have smaller and less-sensitive bristles. Here, we describe bristle morphology and follicle anatomy in the western barn owl (Tyto alba) for the first time, using both live and roadkill wild owls. We show that T. alba have both narial and rictal bristles that are likely to be vibrotactile, since they have Herbst corpuscles around their follicles. We observed more numerous (~8) and longer bristles (~16 mm) on the nares of T. alba, than on the rictal region (~4 and ~13 mm respectively). However, the narial bristle follicles contained fewer Herbst corpuscles in their surroundings (~5) than the rictal bristles (~7); indicating that bristle length is not indicative of sensitivity. As well as bristle length and number varying between different facial regions, they also varied between individuals, although the cause of this variation remains unclear. Despite this variation, the gross anatomy of facial bristle follicles appears to be conserved between nocturnal Strigiformes, Caprimulgiformes and Apterygiformes. Understanding more about how T. alba use their bristles would, therefore, give us greater insights into the function of avian bristles in general

    The Status of Folate, Vitamin B-12 and Homocysteine among Australian Vegetarian and Non-Vegetarian Teenagers

    Get PDF
    Background/Aims: Vegetarians have a high risk of abnormal vitamin B-12 (B-12), and homocysteine (Hcy), status. The objectives included assessment of: 1) folate, B-12, and Hcy status; 2) incidence rate of abnormal folate, B-12, and Hcy; and 3) associations between folate and B-12 with Hcy status among vegetarian and non-vegetarian adolescents. Methods: A cross-sectional plasma folate, B-12, and Hcyassessment in 49 vegetarian and 639 non-vegetarian, 14-17 year-old, participants from New South Wales, Australia. Results: Mean (range) folate (nmol/L), B-12 (pmol/L), and Hcy (μmol/L), were: 33.4 (9.57-101) vs. 27.7 (2.7-86), p=0.033; 287.81 (134-702) vs. 392.22 (119-1300), p Conclusions: B-12 is a nutrient of a concern for vegetarian teenagers. To improve B-12 status, vegetarian adolescents should consume foods fortified with B-12, and/or take B-12 supplements

    The Euler spiral of rat whiskers

    Get PDF
    This paper reports on an analytical study of the intrinsic shapes of 523 whiskers from 15 rats. We show that the variety of whiskers on a rat’s cheek, each of which has different lengths and shapes, can be described by a simple mathematical equation such that each whisker is represented as an interval on the Euler spiral. When all the representative curves of mystacial vibrissae for a single rat are assembled together, they span an interval extending from one coiled domain of the Euler spiral to the other. We additionally find that each whisker makes nearly the same angle of 47∘ with the normal to the spherical virtual surface formed by the tips of whiskers, which constitutes the rat’s tactile sensory shroud or “search space.” The implications of the linear curvature model for gaining insight into relationships between growth, form, and function are discussed

    Diversity of vibrissal follicle anatomy in cetaceans

    Get PDF
    Most cetaceans are born with vibrissae but they can be lost or reduced in adulthood, especially in odontocetes. Despite this, some species of odontocetes have been found to have functioning vibrissal follicles (including the follicle itself and any remaining vibrissal hair shaft) that play a role in mechanoreception, proprioception and electroreception. This reveals a greater diversity of vibrissal function in odontocetes than in any other mammalian group. However, we know very little about vibrissal follicle form and function across the Cetacea. Here, we qualitatively describe the gross vibrissal follicle anatomy of fetuses of three species of cetaceans, including two odontocetes: Atlantic white-sided dolphin (Lagenorhynchus acutus), harbour porpoise (Phocoena phocoena), and one mysticete: minke whale (Balaenoptera acutorostrata), and compared our findings to previous anatomical descriptions. All three species had few, short vibrissae contained within a relatively simple, single-part follicle, lacking in muscles. However, we observed differences in vibrissal number, follicle size and shape, and innervation distribution between the species. While all three species had nerve fibers around the follicles, the vibrissal follicles of Balaenoptera acutorostrata were innervated by a deep vibrissal nerve, and the nerve fibers of the odontocetes studied were looser and more branched. For example, in Lagenorhynchus acutus, branches of nerve fibers travelled parallel to the follicle, and innervated more superficial areas, rather than just the base. Our anatomical descriptions lend support to the observation that vibrissal morphology is diverse in cetaceans, and is worth further investigation to fully explore links between form and function

    Morphological peculiarities of a harbour seal (Phoca vitulina) whisker revealed by normal skeletonisation.

    Get PDF
    Of all mammalian vibrissae, those of certain species of pinnipeds are exceptional. Researchers believe that their curious undulating form evolved for hydrodynamic detection. Our understanding of how these whiskers work depends on a geometrical model that captures the crucial pertinent features of the natural vibrissae including its tapering and curvature. It should also account for the form of the whisker when it flexes under external loading. We introduce and study a normal skeleton of a two-dimensional projection of a harbour seal whisker. The normal skeleton is a complete shape descriptor that involves reduction to the centreline equipped with a thickness function of the orthogonal cross-section. The contours of the whisker shape are extracted from a 2D greyscale scan. Our analysis reveals correspondence between the undulations of the width and oscillations of the centreline curvature as functions of arc length. We discuss two possible explanations for that remarkable feature: one based on consideration of growth and the other of plastic deformation. For the latter we employ a mechanical model to demonstrate appearance of curvature oscillations caused by extensive deflection of the undulating whisker due to external loading

    Abnormal whisker movements in the 3xTg-AD mouse model of Alzheimer's disease

    Get PDF
    Alzheimer's disease is the most frequent form of dementia in elderly people. The triple transgenic (3xTg-AD) mouse model of Alzheimer's Disease is important in biomedical research as these mice develop both neuropathological and behavioural phenotypes. However, their behavioural phenotype is variable, with findings depending on the specific task, as well as the age and sex of the mice. Whisker movements show motor, sensory and cognitive deficits in mouse models of neurodegenerative disease. Therefore, we examined whisker movements in 3, 12.5 and 17-month-old female 3xTg-AD mice and their B6129S/F2 wildtype controls. Mice were filmed using a high-speed video camera (500 fps) in an open arena during a novel object exploration task. Genotype and age differences were found in mice exploring the arena prior to object contact. Prior to whisker contact, the 3-month-old 3xTg-AD mice had smaller whisker angles compared with the wildtype controls, suggesting an early motor phenotype in these mice. Pre-contact mean angular position at 3 months and whisking amplitude at 17 months of age differed between the 3xTg-AD and wildtype mice. During object contact 3xTg-AD mice did not reduce whisker spread as frequently as the wildtype mice at 12.5 and 17 months, which may suggest sensory or attentional deficits. We show that whisker movements are a powerful behavioural measurement tool for capturing behavioural deficits in mouse models that show complex phenotypes, such as the 3xTg-AD mouse model

    The evolutionary origin of avian facial bristles and the likely role of rictal bristles in feeding ecology

    Get PDF
    Facial bristles are one of the least described feather types and have not yet been systematically studied across phylogenetically diverse avian species. Consequently, little is known about their form, function and evolutionary history. Here we address this knowledge gap by characterising the evolution of facial bristles for the first time. We especially focus on rictal bristle presence and their associations with foraging behaviour, diet and habitat preferences in 1022 avian species, representing 91 families in 29 orders. Results reveal that upper rictal, lower rictal and interramal bristles were likely to be present in the most recent common ancestor of this avian phylogeny, whereas narial bristles were likely to be absent. Rictal bristle presence, length and shape varied both within and between avian orders, families and genera. Rictal bristles were gained or lost multiple times throughout evolution, which suggest that the different morphologies observed within species might not be homologous. Phylogenetic relatedness is also not likely to be the only driver of rictal bristle presence and morphology. Rictal bristle presence and length were associated with species-specific ecological traits, especially nocturnality. Our findings suggest that species foraging in low-light conditions are likely to have longer rictal bristles, and that rictal bristles are likely to have evolved in early birds

    Dystrophin Gene Mutation Location and the Risk of Cognitive Impairment in Duchenne Muscular Dystrophy

    Get PDF
    Contains fulltext : 88828.pdf (publisher's version ) (Open Access)BACKGROUND: A significant component of the variation in cognitive disability that is observed in Duchenne muscular dystrophy (DMD) is known to be under genetic regulation. In this study we report correlations between standardised measures of intelligence and mutational class, mutation size, mutation location and the involvement of dystrophin isoforms. METHODS AND RESULTS: Sixty two male subjects were recruited as part of a study of the cognitive spectrum in boys with DMD conducted at the Sydney Children's Hospital (SCH). All 62 children received neuropsychological testing from a single clinical psychologist and had a defined dystrophin gene (DMD) mutation; including DMD gene deletions, duplications and DNA point mutations. Full Scale Intelligence Quotients (FSIQ) in unrelated subjects with the same mutation were found to be highly correlated (r = 0.83, p = 0.0008), in contrast to results in previous publications. In 58 cases (94%) it was possible to definitively assign a mutation as affecting one or more dystrophin isoforms. A strong association between the risk of cognitive disability and the involvement of groups of DMD isoforms was found. In particular, improvements in the correlation of FSIQ with mutation location were identified when a new classification system for mutations affecting the Dp140 isoform was implemented. SIGNIFICANCE: These data represent one of the largest studies of FSIQ and mutational data in DMD patients and is among the first to report on a DMD cohort which has had both comprehensive mutational analysis and FSIQ testing through a single referral centre. The correlation between FSIQ results with the location of the dystrophin gene mutation suggests that the risk of cognitive deficit is a result of the cumulative loss of central nervous system (CNS) expressed dystrophin isoforms, and that correct classification of isoform involvement results in improved estimates of risk
    corecore