528 research outputs found

    Optimal control for halo orbit missions

    Get PDF
    This paper addresses the computation of the required trajectory correction maneuvers (TCM) for a halo orbit space mission to compensate for the launch velocity errors introduced by inaccuracies of the launch vehicle. By combiningdynamical systems theory with optimal control techniques, we produce a portrait of the complex landscape of the trajectory design space. This approach enables parametric studies not available to mission designers a few years ago, such as how the magnitude of the errors and the timingof the first TCM affect the correction ΔV. The impetus for combiningdynamical systems theory and optimal control in this problem arises from design issues for the Genesis Discovery mission being developed for NASA by the Jet Propulsion Laboratory

    Use of Fatty Acid Analysis to Determine Dispersal of Caspian Terns in the Columbia River Basin, U.S.A.

    Get PDF
    Lethal control, which has been used to reduce local abundances of animals in conflict with humans or with endangered species, may not achieve management goals if animal movement is not considered. In populations with emigration and immigration, lethal control may induce compensatory immigration, if the source of attraction remains unchanged. Within the Columbia River Basin (Washington, U.S.A.), avian predators forage at dams because dams tend to reduce rates of emigration of juvenile salmonids (Oncorhynchus spp.), artificially concentrating these prey. We used differences in fatty acid profiles between Caspian Terns (Hydroprogne caspia) at coastal and inland breeding colonies and terns culled by a lethal control program at a mid-Columbia River dam to infer dispersal patterns. We modeled the rate of loss of fatty acid biomarkers, which are fatty acids that can be traced to a single prey species or groups of species, to infer whether and when terns foraging at dams had emigrated from the coast. Nonmetric multidimensional scaling showed that coastal terns had high levels of C20 and C22 monounsaturated fatty acids, whereas fatty acids of inland breeders were high in C18:3n3, C20:4n6, and C22:5n3. Models of the rate of loss of fatty acid showed that approximately 60% of the terns collected at Rock Island Dam were unlikely to have bred successfully at local (inland) sites, suggesting that terns foraging at dams come from an extensive area. Fatty acid biomarkers may provide accurate information about patterns of dispersal in animal populations and may be extremely valuable in cases where populations differ demonstrably in prey base

    Halo orbit mission correction maneuvers using optimal control

    Get PDF
    This paper addresses the computation of the required trajectory correction maneuvers for a halo orbit space mission to compensate for the launch velocity errors introduced by inaccuracies of the launch vehicle. By combining dynamical systems theory with optimal control techniques, we are able to provide a compelling portrait of the complex landscape of the trajectory design space. This approach enables automation of the analysis to perform parametric studies that simply were not available to mission designers a few years ago, such as how the magnitude of the errors and the timing of the first trajectory correction maneuver affects the correction ΔV. The impetus for combining dynamical systems theory and optimal control in this problem arises from design issues for the Genesis Discovery Mission being developed for NASA by the Jet Propulsion Laboratory

    Firefly: Embracing Future Web Technologies

    Get PDF
    At IPAC/Caltech, we have developed the Firefly web archive and visualization system. Used in production for the last eight years in many missions, Firefly gives the scientist significant capabilities to study data. Firefly provided the first completely web based FITS viewer as well as a growing set of tabular and plotting visualizers. Further, it will be used for the science user interface of the LSST telescope which goes online in 2021. Firefly must meet the needs of archive access and visualization for the 2021 LSST telescope and must serve astronomers beyond the year 2030. Recently, our team has faced the fact that the technology behind Firefly software was becoming obsolete. We were searching for ways to utilize the current breakthroughs in maintaining stability, testability, speed, and reliability of large web applications, which Firefly exemplifies. In the last year, we have ported the Firefly to cutting edge web technologies. Embarking on this massive overhaul is no small feat to say the least. Choosing the technologies that will maintain a forward trajectory in a future development project is always hard and often overwhelming. When a team must port 150,000 lines of code for a production-level product there is little room to make poor choices. This paper will give an overview of the most modern web technologies and lessons learned in our conversion from GWT based system to React/Redux based system

    Infiltrating Cardiac Synovial Sarcoma Presenting as Acute Cerebrovascular Accident

    Get PDF
    Primary cardiac sarcoma is a rare malignant myocardial neoplasm that does not exhibit gender predominance or age predilection. The classification of these tumors includes several subtypes, of which synovial sarcoma is a rare manifestation. When present, these tumors portend a poor prognosis with high morbidity and mortality that is attributable to their inherent infiltrative capacity, especially in the absence of treatment. The general consensus for treatment is surgical excision and neoadjuvant chemotherapy and radiotherapy. In this report, a case of synovial sarcoma involving the left ventricular outflow tract and aortic valve is presented

    A patient-specific multi-modality abdominal aortic aneurysm imaging phantom

    Get PDF
    PURPOSE: Multimodality imaging of the vascular system is a rapidly growing area of innovation and research, which is increasing with awareness of the dangers of ionizing radiation. Phantom models that are applicable across multiple imaging modalities facilitate testing and comparisons in pre-clinical studies of new devices. Additionally, phantom models are of benefit to surgical trainees for gaining experience with new techniques. We propose a temperature-stable, high-fidelity method for creating complex abdominal aortic aneurysm phantoms that are compatible with both radiation-based, and ultrasound-based imaging modalities, using low cost materials. METHODS: Volumetric CT data of an abdominal aortic aneurysm were acquired. Regions of interest were segmented to form a model compatible with 3D printing. The novel phantom fabrication method comprised a hybrid approach of using 3D printing of water-soluble materials to create wall-less, patient-derived vascular structures embedded within tailored tissue-mimicking materials to create realistic surrounding tissues. A non-soluble 3-D printed spine was included to provide a radiological landmark. RESULTS: The phantom was found to provide realistic appearances with intravascular ultrasound, computed tomography and transcutaneous ultrasound. Furthermore, the utility of this phantom as a training model was demonstrated during a simulated endovascular aneurysm repair procedure with image fusion. CONCLUSION: With the hybrid fabrication method demonstrated here, complex multimodality imaging patient-derived vascular phantoms can be successfully fabricated. These have potential roles in the benchtop development of emerging imaging technologies, refinement of novel minimally invasive surgical techniques and as clinical training tools
    • …
    corecore