10 research outputs found

    Neutron capture cross section measurement of 238U at the CERN n_TOF facility in the energy region from 1 eV to 700 keV

    No full text
    The aim of this work is to provide a precise and accurate measurement of the 238U(n,γ) reaction cross section in the energy region from 1 eV to 700 keV. This reaction is of fundamental importance for the design calculations of nuclear reactors, governing the behavior of the reactor core. In particular, fast reactors, which are experiencing a growing interest for their ability to burn radioactive waste, operate in the high energy region of the neutron spectrum. In this energy region most recent evaluations disagree due to inconsistencies in the existing measurements of up to 15%. In addition, the assessment of nuclear data uncertainty performed for innovative reactor systems shows that the uncertainty in the radiative capture cross section of 238U should be further reduced to 1–3% in the energy region from 20 eV to 25 keV. To this purpose, addressed by the Nuclear Energy Agency as a priority nuclear data need, complementary experiments, one at the GELINA and two at the n_TOF facility, were proposed and carried out within the 7th Framework Project ANDES of the European Commission. The results of one of these 238U(n,γ) measurements performed at the n_TOF CERN facility are presented in this work. The γ-ray cascade following the radiative neutron capture has been detected exploiting a setup of two C6D6 liquid scintillators. Resonance parameters obtained from this work are on average in excellent agreement with the ones reported in evaluated libraries. In the unresolved resonance region, this work yields a cross section in agreement with evaluated libraries up to 80 keV, while for higher energies our results are significantly higher

    Fission fragment angular distribution measurements of 235U and 238U at CERN n_TOF facility

    No full text
    Neutron-induced fission cross sections of 238U and 235U are used as standards in the fast neutron region up to 200 MeV. A high accuracy of the standards is relevant to experimentally determine other neutron reaction cross sections. Therefore, the detection effciency should be corrected by using the angular distribution of the fission fragments (FFAD), which are barely known above 20 MeV. In addition, the angular distribution of the fragments produced in the fission of highly excited and deformed nuclei is an important observable to investigate the nuclear fission process. In order to measure the FFAD of neutron-induced reactions, a fission detection setup based on parallel-plate avalanche counters (PPACs) has been developed and successfully used at the CERN-n_TOF facility. In this work, we present the preliminary results on the analysis of new 235U(n,f) and 238U(n,f) data in the extended energy range up to 200 MeV compared to the existing experimental data

    High accuracy 234U(n,f) cross section in the resonance energy region

    No full text
    New results are presented of the 234U neutron-induced fission cross section, obtained with high accuracy in the resonance region by means of two methods using the 235U(n,f) as reference. The recent evaluation of the 235U(n,f) obtained with SAMMY by L. C. Leal et al. (these Proceedings), based on previous n_TOF data [1], has been used to calculate the 234U(n,f) cross section through the 234U/235U ratio, being here compared with the results obtained by using the n_TOF neutron flux

    High precision measurement of the radiative capture cross section of 238U at the n_TOF CERN facility

    No full text
    The importance of improving the accuracy on the capture cross-section of 238U has been addressed by the Nuclear Energy Agency, since its uncertainty significantly affects the uncertainties of key design parameters for both fast and thermal nuclear reactors. Within the 7th framework programme ANDES of the European Commission three different measurements have been carried out with the aim of providing the 238U(n,γ) cross-section with an accuracy which varies from 1 to 5%, depending on the energy range. Hereby the final results of the measurement performed at the n_TOF CERN facility in a wide energy range from 1 eV to 700 keV will be presented

    The 236U neutron capture cross-section measured at the n_TOF CERN facility

    No full text
    The 236U isotope plays an important role in nuclear systems, both for future and currently operating ones. The actual knowledge of the capture reaction of this isotope is satisfactory in the thermal region, but it is considered insufficient for Fast Reactor and ADS applications. For this reason the 236U(n, γ) reaction cross-section has been measured for the first time in the whole energy region from thermal energy up to 1 MeV at the n_TOF facility with two different detection systems: an array of C6D6 detectors, employing the total energy deposited method, and a FX1 total absorption calorimeter (TAC), made of 40 BaF2 crystals. The two n_TOF data sets agree with each other within the statistical uncertainty in the Resolved Resonance Region up to 800 eV, while sizable differences (up to ≃ 20%) are found relative to the current evaluated data libraries. Moreover two new resonances have been found in the n_TOF data. In the Unresolved Resonance Region up to 200 keV, the n_TOF results show a reasonable agreement with previous measurements and evaluated data

    The Nuclear Astrophysics program at n_TOF (CERN)

    No full text
    An important experimental program on Nuclear Astrophysics is being carried out at the n_TOF since several years, in order to address the still open issues in stellar and primordial nucleosynthesis. Several neutron capture reactions relevant to s-process nucleosynthesis have been measured so far, some of which on important branching point radioisotopes. Furthermore, the construction of a second experimental area has recently opened the way to challenging measurements of (n, charged particle) reactions on isotopes of short half-life. The Nuclear Astrophysics program of the n_TOF Collaboration is here described, with emphasis on recent results relevant for stellar nucleosynthesis, stellar neutron sources and primordial nucleosynthesis

    Measurement of the 240Pu(n,f) cross-section at the CERN n_TOF facility: first results from experimental area II (EAR-2)

    No full text
    The accurate knowledge of the neutron-induced fission cross-sections of actinides and other isotopes involved in the nuclear fuel cycle is essential for the design of advanced nuclear systems, such as Generation-IV nuclear reactors. Such experimental data can also provide the necessary feedback for the adjustment of nuclear model parameters used in the evaluation process, resulting in the further development of nuclear fission models. In the present work, the 240Pu(n,f) cross-section was measured at CERN's n_TOF facility relative to the well-known 235U(n,f) cross section, over a wide range of neutron energies, from meV to almost MeV, using the time-of-flight technique and a set-up based on Micromegas detectors. This measurement was the first experiment to be performed at n_TOF's new experimental area (EAR-2), which offers a significantly higher neutron flux compared to the already existing experimental area (EAR-1). Preliminary results as well as the experimental procedure, including a description of the facility and the data handling and analysis, are presented

    The measurement programme at the neutron time-of-flight facility n_TOF at CERN

    No full text
    Neutron-induced reaction cross sections are important for a wide variety of research fields ranging from the study of nuclear level densities, nucleosynthesis to applications of nuclear technology like design, and criticality and safety assessment of existing and future nuclear reactors, radiation dosimetry, medical applications, nuclear waste transmutation, accelerator-driven systems and fuel cycle investigations. Simulations and calculations of nuclear technology applications largely rely on evaluated nuclear data libraries. The evaluations in these libraries are based both on experimental data and theoretical models. CERN’s neutron time-of-flight facility n_TOF has produced a considerable amount of experimental data since it has become fully operational with the start of its scientific measurement programme in 2001. While for a long period a single measurement station (EAR1) located at 185 m from the neutron production target was available, the construction of a second beam line at 20 m (EAR2) in 2014 has substantially increased the measurement capabilities of the facility. An outline of the experimental nuclear data activities at n_TOF will be presented

    International Large Detector: Interim Design Report

    No full text
    The ILD detector is proposed for an electron-positron collider with collision centre-of-mass energies from 90~\GeV~to about 1~\TeV. It has been developed over the last 10 years by an international team of scientists with the goal to design and eventually propose a fully integrated detector, primarily for the International Linear Collider, ILC. In this report the fundamental ideas and concepts behind the ILD detector are discussed and the technologies needed for the realisation of the detector are reviewed. The document starts with a short review of the science goals of the ILC, and how the goals can be achieved today with the detector technologies at hand. After a discussion of the ILC and the environment in which the experiment will take place, the detector is described in more detail, including the status of the development of the technologies foreseen for each subdetector. The integration of the different sub-systems into an integrated detector is discussed, as is the interface between the detector and the collider. This is followed by a concise summary of the benchmarking which has been performed in order to find an optimal balance between performance and cost. To the end the costing methodology used by ILD is presented, and an updated cost estimate for the detector is presented. The report closes with a summary of the current status and of planned future actions

    The ILD detector at the ILC

    No full text
    The International Large Detector, ILD, is a detector concept which has been developed for the electron-positron collider ILC. The detector has been optimized for precision physics in a range of energies between 90 GeV and 1 TeV. ILD features a high precision, large volume combined silicon and gaseous tracking system, together with a high granularity calorimeter, all inside a 3.5 T solenoidal magnetic field. The paradigm of particle flow has been the guiding principle of the design of ILD. In this document the required performance of the detector, the proposed implementation and the readiness of the different technologies needed for the implementation are discussed. This is done in the framework of the ILC collider proposal, now under consideration in Japan, and includes site specific aspects needed to build and operate the detector at the proposed ILC site in Japan
    corecore