7,657 research outputs found

    Patient problems encountered by psychiatric nurses

    Full text link
    Thesis (M.S.)--Boston Universit

    A modular set of synthetic spectral energy distributions for young stellar objects

    Full text link
    In this paper, I present a new set of synthetic spectral energy distributions (SEDs) for young stellar objects (YSOs) spanning a wide range of evolutionary stages, from the youngest deeply embedded protostars to pre-main-sequence stars with few or no disks. These models include significant improvements on the previous generation of published models: in particular, the new models cover a much wider and more uniform region of parameter space, do not include highly model-dependent parameters, and include a number of improvements that make them more suited to modeling far-infrared and sub-mm observations of forming stars. Rather than all being part of a single monolithic set of models, the new models are split up into sets of varying complexity. The aim of the new set of models is not to provide the most physically realistic models for young stars, but rather to provide deliberately simplified models for initial modeling, which allows a wide range of parameter space to be explored. I present the design of the model set, and show examples of fitting these models to real observations to show how the new grid design can help us better understand what can be determined from limited unresolved observations. The models, as well as a Python-based fitting tool are publicly available to the community.Comment: Accepted for publication in Astronomy and Astrophysics. The models are available at http://doi.org/10.5281/zenodo.16673

    The present-day star formation rate of the Milky-Way determined from Spitzer detected young stellar objects

    Full text link
    We present initial results from a population synthesis model aimed at determining the star formation rate of the Milky-Way. We find that a total star formation rate of 0.68 to 1.45 Msun/yr is able to reproduce the observed number of young stellar objects in the Spitzer/IRAC GLIMPSE survey of the Galactic plane, assuming simple prescriptions for the 3D Galactic distributions of YSOs and interstellar dust, and using model SEDs to predict the brightness and color of the synthetic YSOs at different wavelengths. This is the first Galaxy-wide measurement derived from pre-main-sequence objects themselves, rather than global observables such as the total radio continuum, Halpha, or FIR flux. The value obtained is slightly lower than, but generally consistent with previously determined values. We will extend this method in the future to fit the brightness, color, and angular distribution of YSOs, and simultaneously make use of multiple surveys, to place constraints on the input assumptions, and reduce uncertainties in the star formation rate estimate. Ultimately, this will be one of the most accurate methods for determining the Galactic star formation rate, as it makes use of stars of all masses (limited only by sensitivity) rather than solely massive stars or indirect tracers of massive stars.Comment: 12 pages, 3 figures, Published in the Astrophysical Journal Letter

    Emission from Very Small Grains and PAH Molecules in Monte Carlo Radiation Transfer Codes: Application to the Edge-On Disk of Gomez's Hamburger

    Full text link
    We have modeled optical to far infrared images, photometry, and spectroscopy of the object known as Gomez's Hamburger. We reproduce the images and spectrum with an edge-on disk of mass 0.3M_sun and radius 1600AU, surrounding an A0 III star at a distance of 280pc. Our mass estimate is in excellent agreement with recent CO observations. However, our distance determination is more than an order of magnitude smaller than previous analyses which inaccurately interpreted the optical spectrum. To accurately model the infrared spectrum we have extended our Monte Carlo radiation transfer codes to include emission from polycyclic aromatic hydrocarbon (PAH) molecules and very small grains (VSG). We do this using pre-computed PAH/VSG emissivity files for a wide range of values of the mean intensity of the exciting radiation field. When Monte Carlo energy packets are absorbed by PAHs/VSGs we reprocess them to other wavelengths by sampling from the emissivity files, thus simulating the absorption and re-emission process without reproducing lengthy computations of statistical equilibrium, excitation and de-excitation in the complex many level molecules. Using emissivity lookup tables in our Monte Carlo codes gives the flexibility to use the latest grain physics calculations of PAH/VSG emissivity and opacity that are being continually updated in the light of higher resolution infrared spectra. We find our approach gives a good representation of the observed PAH spectrum from the disk of Gomez's Hamburger. Our models also indicate the PAHs/VSGs in the disk have a larger scaleheight than larger radiative equilibrium grains, providing evidence for dust coagulation and settling to the midplane.Comment: ApJ accepte
    corecore