143 research outputs found

    Molecular and Physiological Responses of Soybean (Glycine max) to Cold and the Stress Hormone Ethylene

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)Abiotic stresses, such as cold, are serious agricultural problems resulting in substantial crop and revenue losses. Soybean (Glycine max) is an important worldwide crop for food, feed, fuel, and other products. Soybean has long been considered to be cold-intolerant and incapable of cold acclimation. In contrast to these reports, this study demonstrates that cold acclimation improved freezing tolerance in the domestic soybean cultivar ‘Williams 82’ with 50% enhancement of freezing tolerance after 5.2 +\- 0.6 days of cold exposure. Decreases in light dependent photosynthetic function and efficiency accompanied cold treatment. These decreases were due to an increase in photon dissipation likely driven by a decrease in plastoquinone (PQ) pool size limiting electron flow from photosystem II (PSII) to photosystem I (PSI). Cold-induced damage to operational photosynthesis began at 25 minutes of cold exposure and maximal photosynthesis was disrupted after 6 to 7 hours of cold exposure. Cold exposure caused severe photodamage leading to the loss of PSII reaction centers and photosynthetic efficiency. Comparisons of eight cultivars of G. max demonstrated a weak correlation between cold acclimation and northern cultivars versus southern cultivars. In the non-domesticated soybean species Glycine soja, the germination rate after cold imbibition was positively correlated with seedling cold acclimation potential. However, the overall cold acclimation potential in G. soja was equal to that of domestic soybean G. max reducing the enthusiasm for the “wild” soybean as an additional source of genetic diversity for cold tolerance. Despite being relatively cold intolerant, the soybean genome possesses homologs of the major cold responsive CBF/DREB1 transcription factors. These genes are cold-induced in soybean in a similar pattern to that of the cold tolerant model plant species Arabidopsis thaliana. In Arabidopsis, EIN3, a major component of the ethylene signaling pathway, is a negative transcriptional regulator of CBF/DREB1. In contrast to AtEIN3 transcript levels which do not change during cold treatment in Arabidopsis, we observed a cold-dependent 3.6 fold increase in GmEIN3 transcript levels in soybean. We hypothesized that this increase could prevent effective CBF/DREB1 cold regulation in soybean. Analysis of our newly developed cold responsive reporter (AtRD29Aprom::GFP/GUS) soybean transgenic lines demonstrated that inhibition of the ethylene pathway via foliar sprays (AVG, 1-MCP, and silver nitrate) resulted in significant cold-induced GUS activity. Transcripts of GmEIN3A;1 increased in response to ethylene pathway stimulation (ACC and ethephon) and decreased in response to ethylene pathway inhibition in the cold. Additionally, in the cold, inhibition of the ethylene pathway resulted in a significant increase in transcripts of GmDREB1A;1 and GmDREB1A;2 and stimulation of the ethylene pathway led to a decrease in GmDREB1A;1 and GmDREB1B;1 transcripts. To assess the physiological effects of these transcriptional changes; electrolyte leakage, lipid oxidation, free proline content, and photosynthesis were examined. Improvement in electrolyte leakage, a measure of freezing tolerance, was seen only under silver nitrate treatment. Only 1-MCP treatment resulted in significantly decreased lipid oxidation. Transcripts for CBF/DREB1 downstream targets (containing the consensus CRT/DRE motifs) significantly decreased in plants treated with ethylene pathway stimulators in the cold; however, ethylene pathway inhibition generally produced no increase over basal cold levels. To identify if GmEIN3A;1 was capable of binding to GmDREB1 promoters, the negative regulator GmEIN3A;1 and the positive regulator GmICE1A were cloned and expressed in Escherichia coli (E. coli). Preliminary binding results indicated that GmEIN3A;1 can bind to a double stranded section of the GmDREB1A;1 promoter containing putative EIN3 and ICE1 binding sites. GmICE1A is capable of binding to the same section of the GmDREB1A;1 promoter, though only when single stranded. Additional experiments will be required to demonstrate that GmEIN3A;1 and GmICE1A are capable of binding to the GmDREB1A;1 promoter and this work provides the tools to answer these questions. Overall, this work provides evidence that the ethylene pathway transcriptionally inhibits the CBF/DREB1 pathway in soybean through the action of GmEIN3A;1. Yet when GmCBF/DREB1 transcripts are upregulated by ethylene pathway inhibition, no consistent change in downstream targets was observed. These data indicate that the limitation in cold tolerance in soybean is due to a yet unidentified target downstream of CBF/DREB1 transcription

    Lithium Therapy in Alzheimer\u27s Disease

    Get PDF
    Alzheimer\u27s disease (AD) is a neurodegenerative disorder with no known cure which has a strong impact on patients and their caregivers. Current treatments for AD can slow the disease progression, but cannot reverse the damage that has already been done, resulting in some level of lifelong disability for affected patients. The use of lithium has shown promising results in mice models of AD. While animal models have produced positive results, additional human trials need to be conducted in order to determine a place for lithium in Alzheimer\u27s disease therapy. Pharmacists should be aware of this potential new use of lithium since this is a drug that requires intensive monitoring and has multiple drug interactions. By having knowledge of the rationale for using lithium in Alzheimer\u27s disease, pharmacists can be better equipped to counsel patients and their caregivers

    Glycine max and Glycine soja are capable of cold acclimation

    Get PDF
    Soybean has been considered a cold intolerant species; based largely upon seed germination and soil emergent evaluations. This study reports a distinct acquisition of cold tolerance, in seedlings, following short acclimation periods. Diversity in cold responses was assessed in eight cultivars of Glycine max and six accessions of G. soja. All varieties of soybean significantly increased in freezing tolerance following acclimation. This study indicates soybean seedlings are indeed capable of sensing cold and acquiring cold tolerance. Germination rates after cold imbibition were negatively correlated with maturity group, but positively correlated with cold acclimation potential in G. soja. Seed fatty acid composition was varied between the species, with Glycine soja accessions containing about 2-times more linolenic acid (18:3) than G. max. Furthermore, high levels of linoleic acid (18:2) in seeds were positively correlated with germination rates following cold imbibition in G. soja only. We suggest that domestication has not impacted the overall ability of soybean to cold acclimate at the seedling stage and that there is little variation within the domesticated species for ability to cold acclimate. Thus, this brief comparative study reduces the enthusiasm for the “wild” species as an additional source of genetic diversity for cold tolerance

    The Ethylene Signaling Pathway Negatively Impacts CBF/DREB-Regulated Cold Response in Soybean (Glycine max)

    Get PDF
    During cold stress, soybean CBF/DREB1 transcript levels increase rapidly; however, expected downstream targets appear unresponsive. Here, we asked whether the ethylene signaling pathway, which is enhanced in the cold can negatively regulate the soybean CBF/DREB1 cold responsive pathway; thus contributing to the relatively poor cold tolerance of soybean. Inhibition of the ethylene signaling pathway resulted in a significant increase in GmDREB1A;1 and GmDREB1A;2 transcripts, while stimulation led to decreased GmDREB1A;1 and GmDREB1B;1 transcripts. A cold responsive reporter construct (AtRD29Aprom::GFP/GUS), as well as predicted downstream targets of soybean CBF/DREB1 [Glyma.12g015100 (ADH), Glyma.14g212200 (ubiquitin ligase), Glyma.05g186700 (AP2), and Glyma.19g014600 (CYP)] were impacted by the modulation of the ethylene signaling pathway. Photosynthetic parameters were affected by ethylene pathway stimulation, but only at control temperatures. Freezing tolerance (as measured by electrolyte leakage), free proline, and MDA; in both acclimated and non-acclimated plants were increased by silver nitrate but not by other ethylene pathway inhibitors. This work provides evidence that the ethylene signaling pathway, possibly through the action of EIN3, transcriptionally inhibits the CBF/DREB1 pathway in soybean

    UNL Libraries Deposit Programs

    Get PDF
    The University of Nebraska–Lincoln Libraries offers several avenues for preserving and providing access to digital and physical research materials. This document outlines the four main avenues for depositing materials with UNL Libraries. Although there are separate repositories with specific missions—Archives & Special Collections, DigitalCommons@University of Nebraska–Lincoln, UNL Data Repository, and UNL Image & Multimedia Collections—all work together toward the goal of preserving the intellectual and creative output of the university and to make our contributions discoverable to state, national, and international communities. This document describes the operations of each repository. The Libraries policy is to publish, or provide online access to, materials (1) when the Libraries holds copyright, (2) when the copyright holder has granted the Libraries permission for online publication, or (3) when the Libraries do not hold copyright but may manage access behind a firewall. The University Libraries is committed to preserving and providing access to the full range of in-tellectual contributions of the faculty and staff at UNL for the benefit of current and future gen-erations. All members of the University of Nebraska–Lincoln are encouraged to deposit content with UNL Libraries. Materials deposited in our institutional repositories are historical and not all historical events confirm to current standards of civility. As such, they may contain racial or sexual stereotypes that are inappropriate by today’s standards. They have been retained in order to fully represent the materials in their original context. All members of the University of Nebraska–Lincoln are encouraged to deposit content with UNL Libraries. Content can be nondigital items supplied to Archives & Special Collections or digital content deposited in the Data, Image & Multimedia Collections, Digital Commons repositories, or University Archives

    Habits of Mind: Designing Courses for Student Success

    Get PDF
    Although content knowledge remains at the heart of college teaching and learning, forward-thinking instructors recognize that we must also provide 21st-century college students with transferable skills (sometimes called portable intellectual abilities) to prepare them for their futures (Vazquez, 2020; Ritchhart, 2015; Venezia & Jaeger, 2013; Hazard, 2012). To “grow their capacity as efficacious thinkers to navigate and thrive in the face of unprecedented change” (Costa et al., 2023), students must learn and improve important study skills and academic dispositions throughout their educational careers. If we do not focus on skills-building in college courses, students will not be prepared for the challenges that await them after they leave institutions of higher education. If students are not prepared for these postsecondary education challenges, then it is fair to say that college faculty have failed them
    • 

    corecore