797 research outputs found

    Mean shift object tracking with occlusion handling

    Get PDF
    An object tracking algorithm using the Mean Shift framework is presented which is largely invariant to both partial and full occlusions, complex backgrounds and change in scale. Multiple features are used to gain a descriptive representation of the target object. Image moments are used to determine the scale of the target object. A kalman filter is used to successfully track the target object through partial and full occlusions, the Bhattacharyya coefficient is used to determine the measurement noise estimation

    0-pi oscillations in nanostructured Nb/Fe/Nb Josephson junctions

    Full text link
    The physics of the π\pi phase shift in ferromagnetic Josephson junctions may enable a range of applications for spin-electronic devices and quantum computing. We investigate transitions from ``0'' to ``π\pi'' states in Nb/Fe/Nb Josephson junctions by varying the Fe barrier thickness from 0.5 nm to 5.5 nm. From magnetic measurements we estimate for Fe a magnetic dead layer of about 1.1 nm. By fitting the characteristic voltage oscillations with existing theoretical models we extrapolate an exchange energy of 256 meV, a Fermi velocity of 1.98×1051.98 \times 10^5 m/s and an electron mean free path of 6.2 nm, in agreement with other reported values. From the temperature dependence of the ICRNI_CR_N product we show that its decay rate exhibits a nonmonotonic oscillatory behavior with the Fe barrier thickness.Comment: 7 pages, 5 figures, accepted for publication in Eur. Phys. J.

    Phosphoproteins and protein-kinase activity in isolated envelopes of pea (Pisum sativum L.) chloroplasts

    Get PDF
    A protein kinase was found in envelope membranes of purified pea (Pisum sativum L.) chloroplasts. Separation of the two envelope membranes showed that most of the enzyme activity was localized in the outer envelope. The kinase was activated by Mg2+ and inhibited by ADP and pyrophosphate. It showed no response to changes in pH in the physiological range (pH 7-8) or conventional protein substrates. Up to ten phosphorylated proteins could be detected in the envelope-membrane fraction. The molecular weights of these proteins, as determined by polyacrylamide-gel electrophoresis were: two proteins higher than 145 kDa, 97, 86, 62, 55, 46, 34 and 14 kDa. The 86-kDa band being the most pronounced. Experiments with separated inner and outer envelopes showed that most labeled proteins are also localized in the outer-envelope fraction. The results indicate a major function of the outer envelope in the communication between the chloroplast and the parent cell

    Long-Term Efficacy and Safety of Adalimumab in Pediatric Patients with Crohn's Disease

    Get PDF
    Background: IMAgINE 1 assessed 52-week efficacy and safety of adalimumab in children with moderate to severe Crohn's disease. Long-Term efficacy and safety of adalimumab for patients who entered the IMAgINE 2 extension are reported. Methods: Patients who completed IMAgINE 1 could enroll in IMAgINE 2. Endpoints assessed from weeks 0 to 240 of IMAgINE 2 were Pediatric Crohn's Disease Activity Index remission (Pediatric Crohn's Disease Activity Index ≤ 10) and response (Pediatric Crohn's Disease Activity Index decrease ≥15 from IMAgINE 1 baseline) using observed analysis and hybrid nonresponder imputation (hNRI). For hNRI, discontinued patients were imputed as failures unless they transitioned to commercial adalimumab (with study site closure) or adult care, where last observation was carried forward. Corticosteroid-free remission in patients receiving corticosteroids at IMAgINE 1 baseline, discontinuation of immunomodulators (IMMs) in patients receiving IMMs at IMAgINE 2 baseline, and linear growth improvement were reported as observed. Adverse events were assessed for patients receiving ≥1 adalimumab dose in IMAgINE 1 and 2 through January 2015. Results: Of 100 patients enrolled in IMAgINE 2, 41% and 48% achieved remission and response (hNRI) at IMAgINE 2 week 240. Remission rates were maintained by 45% (30/67, hNRI) of patients who entered IMAgINE 2 in remission. At IMAgINE 2 week 240, 63% (12/19) of patients receiving corticosteroids at IMAgINE 1 baseline achieved corticosteroid-free remission and 30% (6/20) of patients receiving IMMs at IMAgINE 2 baseline discontinued IMMs. Adalimumab treatment led to growth velocity normalization. No new safety signals were identified. Conclusions: Efficacy and safety profiles of prolonged adalimumab treatment in children with Crohn's disease were consistent with IMAgINE 1 and adult Crohn's disease adalimumab trials

    Seismology of the Sun : Inference of Thermal, Dynamic and Magnetic Field Structures of the Interior

    Full text link
    Recent overwhelming evidences show that the sun strongly influences the Earth's climate and environment. Moreover existence of life on this Earth mainly depends upon the sun's energy. Hence, understanding of physics of the sun, especially the thermal, dynamic and magnetic field structures of its interior, is very important. Recently, from the ground and space based observations, it is discovered that sun oscillates near 5 min periodicity in millions of modes. This discovery heralded a new era in solar physics and a separate branch called helioseismology or seismology of the sun has started. Before the advent of helioseismology, sun's thermal structure of the interior was understood from the evolutionary solution of stellar structure equations that mimicked the present age, mass and radius of the sun. Whereas solution of MHD equations yielded internal dynamics and magnetic field structure of the sun's interior. In this presentation, I review the thermal, dynamic and magnetic field structures of the sun's interior as inferred by the helioseismology.Comment: To be published in the proceedings of the meeting "3rd International Conference on Current Developments in Atomic, Molecular, Optical and Nano Physics with Applications", December 14-16, 2011, New Delhi, Indi

    Method to compute the stress-energy tensor for the massless spin 1/2 field in a general static spherically symmetric spacetime

    Get PDF
    A method for computing the stress-energy tensor for the quantized, massless, spin 1/2 field in a general static spherically symmetric spacetime is presented. The field can be in a zero temperature state or a non-zero temperature thermal state. An expression for the full renormalized stress-energy tensor is derived. It consists of a sum of two tensors both of which are conserved. One tensor is written in terms of the modes of the quantized field and has zero trace. In most cases it must be computed numerically. The other tensor does not explicitly depend on the modes and has a trace equal to the trace anomaly. It can be used as an analytic approximation for the stress-energy tensor and is equivalent to other approximations that have been made for the stress-energy tensor of the massless spin 1/2 field in static spherically symmetric spacetimes.Comment: 34 pages, no figure

    Ultrarelativistic black hole in an external electromagnetic field and gravitational waves in the Melvin universe

    Full text link
    We investigate the ultrarelativistic boost of a Schwarzschild black hole immersed in an external electromagnetic field, described by an exact solution of the Einstein-Maxwell equations found by Ernst (the ``Schwarzschild-Melvin'' metric). Following the classical method of Aichelburg and Sexl, the gravitational field generated by a black hole moving ``with the speed of light'' and the transformed electromagnetic field are determined. The corresponding exact solution describes an impulsive gravitational wave propagating in the static, cylindrically symmetric, electrovac universe of Melvin, and for a vanishing electromagnetic field it reduces to the well known Aichelburg-Sexl pp-wave. In the boosting process, the original Petrov type I of the Schwarzschild-Melvin solution simplifies to the type II on the impulse, and to the type D elsewhere. The geometry of the wave front is studied, in particular its non-constant Gauss curvature. In addition, a more general class of impulsive waves in the Melvin universe is constructed by means of a six-dimensional embedding formalism adapted to the background. A coordinate system is also presented in which all the impulsive metrics take a continuous form. Finally, it is shown that these solutions are a limiting case of a family of exact gravitational waves with an arbitrary profile. This family is identified with a solution previously found by Garfinkle and Melvin. We thus complement their analysis, in particular demonstrating that such spacetimes are of type II and belong to the Kundt class.Comment: 11 pages, REVTeX
    • …
    corecore