46,320 research outputs found

    Kinematics of the Broad Line Region in M81

    Full text link
    A new model is presented which explains the origin of the broad emission lines observed in the LINER/Seyfert nucleus of M81 in terms of a steady state spherically symmetric inflow, amounting to 1 x 10^-5 Msun/yr, which is sufficient to explain the luminosity of the AGN. The emitting volume has an outer radius of ~1 pc, making it the largest broad line region yet to be measured, and it contains a total mass of ~ 5 x 10^-2 Msun of dense, ~ 10^8 cm^-3, ionized gas, leading to a very low filling factor of ~ 5 x 10^-9. The fact that the BLR in M81 is so large may explain why the AGN is unable to sustain the ionization seen there. Thus, the AGN in M81 is not simply a scaled down quasar.Comment: Accepted for Publication in ApJ 7/21/0

    Study of fast response thermocouple measurement of temperatures in cryogenic gases

    Get PDF
    Thermocouples fabricated from uninsulated small diameter wire have fast reproducible response times. The thermocouple is thermally isolated from its supports by making the leads of sufficient length so that the heat conduction down the leads is small and assuming that the leads adjacent to the junction are subjected to the same thermal conditions

    Aeroelastic analysis of wings using the Euler equations with a deforming mesh

    Get PDF
    Modifications to the CFL3D three dimensional unsteady Euler/Navier-Stokes code for the aeroelastic analysis of wings are described. The modifications involve including a deforming mesh capability which can move the mesh to continuously conform to the instantaneous shape of the aeroelastically deforming wing, and including the structural equations of motion for their simultaneous time-integration with the governing flow equations. Calculations were performed using the Euler equations to verify the modifications to the code and as a first step toward aeroelastic analysis using the Navier-Stokes equations. Results are presented for the NACA 0012 airfoil and a 45 deg sweptback wing to demonstrate applications of CFL3D for generalized force computations and aeroelastic analysis. Comparisons are made with published Euler results for the NACA 0012 airfoil and with experimental flutter data for the 45 deg sweptback wing to assess the accuracy of the present capability. These comparisons show good agreement and, thus, the CFL3D code may be used with confidence for aeroelastic analysis of wings

    A study of wing body blending for an advanced supersonic transport

    Get PDF
    Increases in supersonic cruise lift drag ratio were sought at Mach numbers 2.2 and 2.7 using wing body planform and thickness blending. Constrained twist and camber optimization was performed in the presence of nacelles. Wing and fuselage thickness distributions were optimized for either minimum volume wave drag or minimum total pressure wave drag. The zero leading edge suction lift drag ratios were determined for three wing planforms. The magnitude of the effect of leading edge suction on attainable lift drag ratio was defined on one planform and estimation of available leading edge suction was made

    The Structure Of The Accretion Disk In The ADC Source 4U 1822-371

    Get PDF
    The low-mass X-ray binary (LMXB) 4U 1822-371 has an accretion disk corona (ADC) that scatters X-ray photons from the inner disk and neutron star out of the line of sight. It has a high orbital inclination and the secondary star eclipses the disk and ADC. We have obtained new time-resolved UV spectrograms and V- and I-band photometry of 4U 1822-371. The large quadratic term in our new optical eclipse ephemeris confirms that the system has an extremely high rate of mass transfer and mass accretion. The C IV lambda lambda = 1548 - 1550 angstrom emission line has a half width of similar to 4400 km/s, indicating a strong, high velocity wind is being driven off the accretion disk. Near the disk the wind is optically thick in UV, V, and J and the eclipse analysis shows that in V and J the optically thick wind extends nearly to the outer edge of the disk. The ADC must also extend vertically to a height equal to approximately half the disk radius.Astronom
    corecore