42 research outputs found

    Strong odd-frequency correlations in fully gapped Zeeman-split superconductors.

    Get PDF
    It is now well established that at a superconductor/ferromagnet (S/F) interface an unconventional superconducting state arises in which the pairing is odd-frequency. The hallmark signature of this superconducting state is generally understood to be an enhancement of the electronic density of states (DoS) at subgap energies close to the S/F interface. However, here we show that an odd frequency state can be present even if the DoS is fully gapped. As an example, we show that this is the case in the pioneering S/FI (where FI is a insulating ferromagnet) tunneling experiments of Meservey and Tedrow, and we derive a generalized analytical criterium to describe the effect of odd-frequency pairing on the DoS. Finally, we propose a simple experiment in which odd-frequency pairing in a Zeeman-split superconductor can be unambiguously detected via the application of an external magnetic field.J.L was supported by the Research Council of Norway, Grants No. 205591 and 216700 and the ”Outstanding Academic Fellows” programme at NTNU. J.W.A.R. acknowledges financial support from the Royal Society (”Superconducting Spintronics”) and through a Leverhulme Trust International Network Grant (grant IN-2013-033).This is the final version of the article. It first appeared from NPG via http://dx.doi.org/10.1038/srep1548

    Controlling spin supercurrents via nonequilibrium spin injection.

    Get PDF
    We propose a mechanism whereby spin supercurrents can be manipulated in superconductor/ferromagnet proximity systems via nonequilibrium spin injection. We find that if a spin supercurrent exists in equilibrium, a nonequilibrium spin accumulation will exert a torque on the spins transported by this current. This interaction causes a new spin supercurrent contribution to manifest out of equilibrium, which is proportional to and polarized perpendicularly to both the injected spins and the equilibrium spin current. This is interesting for several reasons: as a fundamental physical effect; due to possible applications as a way to control spin supercurrents; and timeliness in light of recent experiments on spin injection in proximitized superconductors

    Electric control of superconducting transition through a spin-orbit coupled interface.

    Get PDF
    We demonstrate theoretically all-electric control of the superconducting transition temperature using a device comprised of a conventional superconductor, a ferromagnetic insulator, and semiconducting layers with intrinsic spin-orbit coupling. By using analytical calculations and numerical simulations, we show that the transition temperature of such a device can be controlled by electric gating which alters the ratio of Rashba to Dresselhaus spin-orbit coupling. The results offer a new pathway to control superconductivity in spintronic devices.J.L. and J.A.O. acknowledge funding via the “Outstanding Academic Fellows” programme at NTNU, the COST Action MP-1201 and the Research Council of Norway Grant numbers 205591, 216700, and 240806. J.W.A.R. and A.D.B. acknowledge funding from the Leverhulme Trust (IN-2013-033), the Royal Society and the EPSRC through the Programme Grant “Superconducting Spintronics” (EP/N017242/1), and the Doctoral Training Grant (NanoDTC EP/G037221/1

    Two-channel anomalous Hall effect in SrRuO3

    Get PDF
    The Hall effect in SrRuO3_3 thin-films near the thickness limit for ferromagnetism shows an extra peak in addition to the ordinary and anomalous Hall effects. This extra peak has been attributed to a topological Hall effect due to two-dimensional skyrmions in the film around the coercive field; however, the sign of the anomalous Hall effect in SrRuO3_3 can change as a function of saturation magnetization. Here we report Hall peaks in SrRuO3_3 in which volumetric magnetometry measurements and magnetic force microscopy indicate that the peaks result from the superposition of two anomalous Hall channels with opposite sign. These channels likely form due to thickness variations in SrRuO3_3, creating two spatially separated magnetic regions with different saturation magnetizations and coercive fields. The results are central to the development of strongly correlated materials for spintronics.This work is supported by the EPSRC through the Core-to-Core International Network “Oxide Superspin” (EP/P026311/1) and the Doctoral Training Partnership Grant (EP/N509620/1). Additional support from the Office of Basic Energy Sciences Division of Materials Sciences and Engineering, US Department of Energy under Award numbers de-sc0018153, and the Research Center Program of IBS (Institute for Basic Science) in Korea (IBS-R009-D1)

    Enhanced spin pumping into superconductors provides evidence for superconducting pure spin currents.

    Get PDF
    Unlike conventional spin-singlet Cooper pairs, spin-triplet pairs can carry spin1,2. Triplet supercurrents were discovered in Josephson junctions with metallic ferromagnet spacers, where spin transport can occur only within the ferromagnet and in conjunction with a charge current. Ferromagnetic resonance injects a pure spin current from a precessing ferromagnet into adjacent non-magnetic materials3,4. For spin-singlet pairing, the ferromagnetic resonance spin pumping efficiency decreases below the critical temperature (Tc) of a coupled superconductor5,6. Here we present ferromagnetic resonance experiments in which spin sink layers with strong spin-orbit coupling are added to the superconductor. Our results show that the induced spin currents, rather than being suppressed, are substantially larger in the superconducting state compared with the normal state; although further work is required to establish the details of the spin transport process, we show that this cannot be mediated by quasiparticles and is most likely a triplet pure spin supercurrent

    Transition between canted antiferromagnetic and spin-polarized ferromagnetic quantum Hall states in graphene on a ferrimagnetic insulator

    Get PDF
    In the quantum Hall regime of graphene, antiferromagnetic and spin-polarized ferromagnetic states at the zeroth Landau level compete, leading to a canted antiferromagnetic state depending on the direction and magnitude of an applied magnetic field. Here, we investigate this transition at 2.7 K in graphene Hall bars that are proximity coupled to the ferrimagnetic insulator Y3Fe5O12. From nonlocal transport measurements, we demonstrate an induced magnetic exchange field in graphene, which lowers the magnetic field required to modulate the magnetic state in graphene. These results show that a magnetic proximity effect in graphene is an important ingredient for the development of two-dimensional materials in which it is desirable for ordered states of matter to be tunable with relatively small applied magnetic fields (> 6 T)

    Measurement of jet fragmentation in Pb+Pb and pppp collisions at sNN=2.76\sqrt{{s_\mathrm{NN}}} = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF
    corecore