366 research outputs found

    The String Calculation of QCD Wilson Loops on Arbitrary Surfaces

    Full text link
    Compact string expressions are found for non-intersecting Wilson loops in SU(N) Yang-Mills theory on any surface (orientable or nonorientable) as a weighted sum over covers of the surface. All terms from the coupled chiral sectors of the 1/N expansion of the Wilson loop expectation values are included.Comment: 10 pages, LaTeX, no figure

    MSFC's Advanced Space Propulsion Formulation Task

    Get PDF
    In NASA s Fiscal Year 2012, a small project was undertaken to provide additional substance, depth, and activity knowledge to the technology areas identified in the In-Space Propulsion Systems Roadmap, Technology Area 02 (TA-02), as created under the auspices of the NASA Office of the Chief Technologist (OCT). This roadmap was divided into four basic groups: (1) Chemical Propulsion, (2) Non-chemical Propulsion, (3) Advanced (TRL<3) Propulsion Technologies, and (4) Supporting Technologies. The first two were grouped according to the governing physics. The third group captured technologies and physic concepts that are at a lower TRL level. The fourth group identified pertinent technical areas that are strongly coupled with these related areas which could allow significant improvements in performance. There were a total of 45 technologies identified in TA-02, and 25 of these were studied in this formulation task. The goal of this task was to provide OCT with a knowledge-base for decisionmaking on advanced space propulsion technologies and not waste money by unintentionally repeating past projects or funding the technologies with minor impacts. This formulation task developed the next level of detail for technologies described and provides context to OCT where investments should be made. The presentation will begin with the list of technologies from TA-02, how they were prioritized for this study, and details on what additional data was captured for the technologies studied. Following this, some samples of the documentation will be provided, followed by plans on how the data will be made accessible

    Seagrass Health Modeling and Prediction with NASA Science Data

    Get PDF
    Previous research has demonstrated that MODIS data products can be used as inputs into the seagrass productivity model developed by Fong and Harwell (1994). To further explore this use to predict seagrass productivity, Moderate Resolution Imaging Spectroradiometer (MODIS) custom data products, including Sea Surface Temperature, Light Attenuation, and Chlorophyll-a have been created for use as model parameter inputs. Coastal researchers can use these MODIS data products and model results in conjunction with historical and daily assessment of seagrass conditions to assess variables that affect the productivity of the seagrass beds. Current monitoring practices involve manual data collection (typically on a quarterly basis) and the data is often insufficient for evaluating the dynamic events that influence seagrass beds. As part of a NASA-funded research grant, the University of Mississippi, is working with researchers at NASA and Radiance Technologies to develop methods to deliver MODIS derived model output for the northern Gulf of Mexico (GOM) to coastal and environmental managers. The result of the project will be a data portal that provides access to MODIS data products and model results from the past 5 years, that includes an automated process to incorporate new data as it becomes available. All model parameters and final output will be available through the use National Oceanic and Atmospheric Administration?s (NOAA) Environmental Research Divisions Data Access Program (ERDDAP) tools as well as viewable using Thematic Realtime Environmental Distributed Data Services (THREDDS) and the Integrated Data Viewer (IDV). These tools provide the ability to create raster-based time sequences of model output and parameters as well as create graphs of model parameters versus time. This tool will provide researchers and coastal managers the ability to analyze the model inputs so that the factors influencing a change in seagrass productivity can be determined over time

    estMOI: estimating multiplicity of infection using parasite deep sequencing data.

    Get PDF
    Individuals living in endemic areas generally harbour multiple parasite strains. Multiplicity of infection (MOI) can be an indicator of immune status and transmission intensity. It has a potentially confounding effect on a number of population genetic analyses, which often assume isolates are clonal. Polymerase chain reaction-based approaches to estimate MOI can lack sensitivity. For example, in the human malaria parasite Plasmodium falciparum, genotyping of the merozoite surface protein (MSP1/2) genes is a standard method for assessing MOI, despite the apparent problem of underestimation. The availability of deep coverage data from massively parallizable sequencing technologies means that MOI can be detected genome wide by considering the abundance of heterozygous genotypes. Here, we present a method to estimate MOI, which considers unique combinations of polymorphisms from sequence reads. The method is implemented within the estMOI software. When applied to clinical P.falciparum isolates from three continents, we find that multiple infections are common, especially in regions with high transmission

    Speaking of trade: Its effect on agriculture

    Get PDF
    This archival publication may not reflect current scientific knowledge or recommendations. Current information available from the University of Minnesota Extension: https://www.extension.umn.edu

    Self – perceived and clinically diagnosed dental and periodontal health status among young adults and their implications for epidemiological surveys

    Get PDF
    BACKGROUND: Clinical (normative) and subjective (self-assessment) evaluation of caries and periodontal diseases have been reported to demonstrate a significant disparity. The dental public health team is obligated to recognize and understand this gap. The objectives of the study were to investigate the practical values of using questionnaires (self–perceived assessment) as compared to clinical examinations (normative assessment) and to evaluate the implications of the results in understanding the public's perception of oral health. METHODS: The investigation was performed on 4920, 21 year-old Israeli adults upon release from compulsory military service between 1996 and 1998. Participants were asked to fill in a questionnaire inquiring how they would rate their personal dental and periodontal health levels. Clinical examinations, employing the DMFT and CPITN indices, were performed to determine normative oral health status. Perceived and normative assessments were compared for sensitivity, specificity, positive and negative predictive values and overall proportions using the clinical examinations as a gold standard. RESULTS: The sensitivity (disease perception) for dental status was found to be 0.34, while the specificity (health perception) was found to be 0.83. The positive predictive value for perceived dental status was found to be 0.68, whereas the negative predictive value was found to be 0.54. The sensitivity for perceived periodontal status was found to be 0.28, while the specificity was found to be 0.83. The positive predictive value for perceived periodontal status was found to be 0.05, whereas the negative predictive value was found to be 0.97. Regarding the overall proportions, a large discrepancy was found between self–assessment and professional assessment for both dental and periodontal health status. CONCLUSIONS: Self-assessment questionnaires were of low value in evaluating oral health status both in the individual and public levels, though perception levels of health were higher than that of disease. Findings reflects a low level of awareness of the public that may influence care-seeking behavior and highlight the importance of oral health promotion and the crucial need for public health action

    The Impossibility of a Perfectly Competitive Labor Market

    Get PDF
    Using the institutional theory of transaction cost, I demonstrate that the assumptions of the competitive labor market model are internally contradictory and lead to the conclusion that on purely theoretical grounds a perfectly competitive labor market is a logical impossibility. By extension, the familiar diagram of wage determination by supply and demand is also a logical impossibility and the neoclassical labor demand curve is not a well-defined construct. The reason is that the perfectly competitive market model presumes zero transaction cost and with zero transaction cost all labor is hired as independent contractors, implying multi-person firms, the employment relationship, and labor market disappear. With positive transaction cost, on the other hand, employment contracts are incomplete and the labor supply curve to the firm is upward sloping, again causing the labor demand curve to be ill-defined. As a result, theory suggests that wage rates are always and everywhere an amalgam of an administered and bargained price. Working Paper 06-0

    The Need for Laboratory Measurements and Ab Initio Studies to Aid Understanding of Exoplanetary Atmospheres

    Full text link
    We are now on a clear trajectory for improvements in exoplanet observations that will revolutionize our ability to characterize their atmospheric structure, composition, and circulation, from gas giants to rocky planets. However, exoplanet atmospheric models capable of interpreting the upcoming observations are often limited by insufficiencies in the laboratory and theoretical data that serve as critical inputs to atmospheric physical and chemical tools. Here we provide an up-to-date and condensed description of areas where laboratory and/or ab initio investigations could fill critical gaps in our ability to model exoplanet atmospheric opacities, clouds, and chemistry, building off a larger 2016 white paper, and endorsed by the NAS Exoplanet Science Strategy report. Now is the ideal time for progress in these areas, but this progress requires better access to, understanding of, and training in the production of spectroscopic data as well as a better insight into chemical reaction kinetics both thermal and radiation-induced at a broad range of temperatures. Given that most published efforts have emphasized relatively Earth-like conditions, we can expect significant and enlightening discoveries as emphasis moves to the exotic atmospheres of exoplanets.Comment: Submitted as an Astro2020 Science White Pape
    • …
    corecore