22 research outputs found

    Blood Flow Dynamics in Burns

    No full text
    Objectives: Burns of intermediate thickness are hard to evaluate clinically. This often leads to unnecessary delays of up to 14 days before a surgical decision can be made. To counter this, several objective methods have been developed to determine the healing potential of the wound. Over the years, measurement of perfusion has proven to be the most successful method for evaluation of healing potential. Laser Doppler imaging (LDI) is currently the most used method and can determine surgical need 2 days after injury with an accuracy >90%.   There are however emerging techniques like laser speckle contrast imaging (LSCI), which also measure perfusion. LSCI have several advantages over LDI and is easier to use. LSCI can also investigate aspects of the microcirculation, previously not possible with LDI. The aim of this thesis was to investigate LSCI’s ability to evaluate surgical need in burns of indeterminate partial-thickness.   The first objective was to investigate the dynamics of perfusion the first 14 days after injury. The purpose was to find the optimal time-window for perfusion measurements. The next goal was to determine the accuracy of different perfusion cut-offs. In this second study, the benefit of a subsequent measurement was also investigated. After this, interobserver variation between different profession groups was studied. Both the agreement of perfusion measurements and observer assessments were evaluated. Finally, cardiac vasomotion in combination with perfusion (pulsatility) was investigated as a method to determine surgical need <48 hours after injury.   Methods: Perfusion was measured in a total of 77 patients at the Department of Plastic Surgery, Hand Surgery and Burns at Linköping University Hospital, Sweden. Most of these patients were children and the most common type of burn was scalds. A laser speckle contrast imager (PeriCam PSI System, Perimed AB, Järfälla, Sweden) was used to measure perfusion.   Results:   In the first paper we showed a clear relation between perfusion dynamics and the healing potential of the wound. The changes in perfusion were largest the first 5 days after injury, why this time interval was selected for subsequent papers. Perfusion measurements done day 3-4 after injury could predict surgical need with a sensitivity of 100% (95% CI: 83.9-100%) and a specificity of 90.4% (95% CI: 83.8-94.9%). If two measurements were used, <24 hours and 3-4 days after injury, the accuracy was 100%. Furthermore, we found that different observers could consistently predict perfusion, while there was a large variation in their clinical assessments. This was not improved by extensive burn experience. Finally, pulsatility could be used to predict surgical need the same day as the injury occurred with a sensitivity of 100% (95% CI: 88.1-100%) and a specificity of 98.8% (95% CI: 95.7- 99.9%).   Conclusions:   LSCI is a promising method for evaluation of burns and provides several benefits over LDI. The surgical need of burns can be determined mere hours after injury when pulsatility is measured. However, the benefits of early scald diagnostics in children with LSCI need to be evaluated in a prospective study before the method is ready for routine clinical use

    The microvascular response in the skin to topical application of methyl nicotinate : Effect of concentration and variation between skin sites

    No full text
    Background Methyl nicotinate (MN) induces a local cutaneous erythema in the skin and may be used as a local provocation in the assessment of microcirculation and skin viability. The aims were to measure the effects of increasing doses of MN, to find the concentration that yields the most reproducible effect from day to day and between sites, and to study the variation between skin sites. Methods Microvascular responses to topically applied MN at different concentrations were measured in 12 subjects on separate days and on contralateral sides, using laserspeckle contrast imaging (LSCI). MN effects were measured in four different body sites. Results At 20 mmol/L, the response to MN was most reproducible day-to-day and site-to-site, and resulted in a plateau response between 5 and 20 min after application. The skin region of the lower back had a lower perfusion value compared to the epigastric region (p = 0.007). When responses were compared to nearby, unprovoked areas, a significantly larger increase in perfusion was seen in the forearm, compared to all other anatomical sites (p < 0.03). Conclusion A concentration of 20 mmol/L MN generated the most reproducible microvascular response in the skin. The response varies between different body sites

    Accuracy of laser speckle contrast imaging in the assessment of pediatric scald wounds

    No full text
    Background: Changes in microvascular perfusion in scalds in children during the first four days, measured with laser speckle contrast imaging (LSCI), are related to the time to healing and need for surgical intervention. The aim of this study was to determine the accuracy (sensitivity and specificity) of LSCI on different days after injury in the prediction of healing outcome and if the accuracy can be improved by combining an early and a late measurement. Also, the accuracy of LSCI was compared with that of clinical assessment. Methods: Perfusion was measured between 0-24h and between 72-96h using LSCI in 45 children with scalds. On the same occasions, burn surgeons assessed the burns as healing amp;lt; 14days or healing amp;gt; 14days/surgery. Receiver operating characteristic (ROC) curves were constructed for the early and late measurement and for the double measurement (DM) using two different methods. Results: Sensitivity and specificity were 92.3% (95% CI: 64.0-99.8%) and 78.3% (95% CI: 69.985.3%) between 0-24h, 100% (95% CI: 84.6-100%) and 90.4% (95% CI: 83.8-94.9%) between 72-96h, and was 100% (95% CI: 59.0-100%) and 100% (95% CI: 95.1-100%) when combining the two measurements into a modified perfusion trend. Clinical assessment had an accuracy of 67%, Cohens k=0.23. Conclusion: The perfusion in scalds between 72-96h after injury, as measured using LSCI, is highly predictive of healing outcome in scalds when measured. The predictive value can be further improved by incorporating an early perfusion measurement within 24h after injury. (C) 2017 Elsevier Ltd and ISBI. All rights reserved

    Interobserver reliability of laser speckle contrast imaging in the assessment of burns

    No full text
    Objectives: Laser speckle contrast imaging (LSCI) is an emerging technique for the assessment of burns in humans and interobserver differences have not been studied. The aim of this study was to compare assessments of perfusion images by different professional groups regarding (i) perfusion values and (ii) burn depth assessment. Methods: Twelve observers without LSCI experience were included. The observers were evenly recruited from three professional groups: plastic surgeons with experience in assessing burns, nurses with experience in treating burns, and junior doctors with limited experience of burns. Ten cases were included. Each case consisted of one digital photo of the burn with a pre-marked region of interest (ROI) and two unmarked perfusion images of the same area. The first and the second perfusion image was from 24h and 72-96h after injury, respectively. The perfusion values from both perfusion images were used to generate a LSCI recommendation based on the perfusion trend (the derivative between the two perfusion values). As a last step, each observer was asked to estimate the burn depth using their clinical experience and all available information. Intraclass correlation (ICC) was calculated between the different professional groups and among all observers. Results: Perfusion values and perfusion trends between all observers had an ICC of 0.96 (95% CI 0.91-0.99). Burn depth assessment by all observers yielded an ICC of 0.53 (95% CI: 0.31-0.80) and an accuracy of 0.53 (weighted kappa). LSCI recommendations generated by all observers had an ICC of 0.95 (95% CI: 0.90-0.99). Conclusion: Observers can reliably identify the same ROI, which results in observer-independent perfusion measurements, irrespective of burn experience. Extensive burn experience did not further improve burn depth assessment. The LSCI recommendation was more accurate in all professional groups. Introducing LSCI measurements would be likely improve early assessment of burns. (C) 2019 Elsevier Ltd and ISBI. All rights reserved

    Time-Independent Prediction of Burn Depth using Deep Convolutional Neural Networks

    No full text
    We present in this paper the application of deep convolutional neural networks, which are a state-of-the-art artificial intelligence (AI) approach in machine learning, for automated time-independent prediction of burn depth. Colour images of four types of burn depth injured in first few days, including normal skin and background, acquired by a TiVi camera were trained and tested with four pre-trained deep convolutional neural networks: VGG-16, GoogleNet, ResNet-50, and ResNet-101. In the end, the best 10-fold cross-validation results obtained from ResNet- 101 with an average, minimum, and maximum accuracy are 81.66%, 72.06% and 88.06%, respectively; and the average accuracy, sensitivity and specificity for the four different types of burn depth are 90.54%, 74.35% and 94.25%, respectively. The accuracy was compared to the clinical diagnosis obtained after the wound had healed. Hence, application of AI is very promising for prediction of burn depth and therefore can be a useful tool to help in guiding clinical decision and initial treatment of burn wounds.Funding agencies: Analytic Imaging Diagnostic Arena (AIDA)</p

    Improving burn depth assessment for pediatric scalds by AI based on semantic segmentation of polarized light photography images

    No full text
    This paper illustrates the efficacy of an artificial intelligence (AI) (a convolutional neural network, based on the U-Net), for the burn-depth assessment using semantic segmentation of polarized high-performance light camera images of burn wounds. The proposed method is evaluated for paediatric scald injuries to differentiate four burn wound depths: superficial partial-thickness (healing in 0–7 days), superficial to intermediate partial-thickness (healing in 8–13 days), intermediate to deep partial-thickness (healing in 14–20 days), deep partial-thickness (healing after 21 days) and full-thickness burns, based on observed healing time. In total 100 burn images were acquired. Seventeen images contained all 4 burn depths and were used to train the network. Leave-one-out cross-validation reports were generated and an accuracy and dice coefficient average of almost 97% was then obtained. After that, the remaining 83 burn-wound images were evaluated using the different network during the cross-validation, achieving an accuracy and dice coefficient, both on average 92%. This technique offers an interesting new automated alternative for clinical decision support to assess and localize burn-depths in 2D digital images. Further training and improvement of the underlying algorithm by e.g., more images, seems feasible and thus promising for the future

    Tensor Decomposition for Colour Image Segmentation of Burn Wounds

    No full text
    Research in burns has been a continuing demand over the past few decades, and important advancements are still needed to facilitate more effective patient stabilization and reduce mortality rate. Burn wound assessment, which is an important task for surgical management, largely depends on the accuracy of burn area and burn depth estimates. Automated quantification of these burn parameters plays an essential role for reducing these estimate errors conventionally carried out by clinicians. The task for automated burn area calculation is known as image segmentation. In this paper, a new segmentation method for burn wound images is proposed. The proposed methods utilizes a method of tensor decomposition of colour images, based on which effective texture features can be extracted for classification. Experimental results showed that the proposed method outperforms other methods not only in terms of segmentation accuracy but also computational speed.Funding Agencies|Faculty of Science and Engineering Grant</p

    Microcirculatory changes in the skin after postmastectomy radiotherapy in women with breast cancer

    No full text
    Abstract Postmastectomy radiotherapy (PMRT) increases the risk for complications after breast reconstruction. The pathophysiological mechanism underlying this increased risk is not completely understood. The aim of this study was to examine if there is a relationship between PMRT and microvascular perfusion in the skin directly after, and at 2 and 6 months after PMRT and to assess if there is impaired responsiveness to a topically applied vasodilator (Methyl nicotinate—MN) after PMRT. Skin microvascular responses after PMRT were measured on two sites in the irradiated chest wall of 22 women before, immediately after, and at 2 and 6 months after unilateral PMRT with the contralateral breast as a control. A significant increase in basal skin perfusion was observed in the irradiated chest wall immediately after RT (p < 0.0001). At 2 and 6 months after RT, there was no longer a difference in basal skin perfusion compared to the contralateral breast and compared to baseline. Similarly, the blood flow response in the skin after application of MN was stronger immediately after RT compared to before RT (p < 0.0001), but there was no difference at later time points. These results indicate that the increased risk for complications after surgical procedures are not directly related to changes in skin perfusion and microvascular responsiveness observed after postmastectomy RT

    Data on microcirculatory perfusion dips in the resting nail bed

    No full text
    This article contains the raw data from the article entitled: "The presence of synchronized perfusion dips in the microcirculation of the resting nail bed" Mirdell et al. (in press). A laser speckle contrast imager (LSCI) was used to make a total of 21 recordings of the perfusion in the resting nail bed of 10 healthy test subjects. The first 10 recordings were acquired after 5?min of acclimatization. An additional 10 recordings were acquired in the same test subjects, after 20?min of acclimatization. In the last recording, a digital nerve block was applied to the left dig III. The data show the presence of highly irregular perfusion variations, a phenomenon we like to call perfusion dips. The data also show how the perfusion dips can be abolished through a digital nerve block. An algorithm for the quantification of the perfusion dips is included in the data
    corecore