261 research outputs found
Selective transmission of R5 HIV-1 variants: where is the gatekeeper?
To enter target cells HIV-1 uses CD4 and a coreceptor. In vivo the coreceptor function is provided either by CCR5 (for R5) or CXCR4 (for X4 HIV-1). Although both R5 and X4 HIV-1 variants are present in body fluids (semen, blood, cervicovaginal and rectal secretions), R5 HIV-1 appears to transmit infection and dominates early stages of HIV disease. Moreover, recent sequence analysis of virus in acute infection shows that, in the majority of cases of transmission, infection is initiated by a single virus. Therefore, the existence of a âgatekeeperâ that selects R5 over X4 HIV-1 and that operates among R5 HIV-1 variants has been suggested. In the present review we consider various routes of HIV-transmission and discuss potential gatekeeping mechanisms associated with each of these routes. Although many mechanisms have been identified none of them explains the almost perfect selection of R5 over X4 in HIV-1 transmission. We suggest that instead of one strong gatekeeper there are multiple functional gatekeepers and that their superimposition is sufficient to protect against X4 HIV-1 infection and potentially select among R5 HIV-1 variants. In conclusion, we propose that the principle of multiple barriers is more general and not restricted to protection against X4 HIV-1 but rather can be applied to other phenomena when one factor has a selective advantage over the other(s). In the case of gatekeepers for HIV-1 transmission, the task is to identify them and to decipher their molecular mechanisms. Knowledge of the gatekeepersâ localization and function may enable us to enhance existing barriers against R5 transmission and to erect the new ones against all HIV-1 variants
Preclinical evaluation of lime juice as a topical microbicide candidate
Background: The continued growth of the global HIV epidemic highlights the urgent need to develop novel prevention strategies to reduce HIV transmission. The development of topical microbicides is likely to take a number of years before such a product would be widely available.
This has resulted in a call for the rapid introduction of simpler vaginal intervention strategies in the interim period. One suggested practice would be vaginal douching with natural products including lime or lemon juice. Here we present a comprehensive preclinical evaluation of lime juice (LiJ) as a potential intervention strategy against HIV.
Results: Pre-treatment of HIV with LiJ demonstrated direct virucidal activity, with 10% juice inactivating the virus within 5 minutes. However, this activity was significantly reduced in the presence of seminal plasma, where inactivation required maintaining a 1:1 mixture of neat LiJ and seminal plasma for more than 5 minutes. Additionally, LiJ demonstrated both time and dosedependent
toxicity towards cervicovaginal epithelium, where exposure to 50% juice caused 75â90% toxicity within 5 minutes increasing to 95% by 30 minutes. Cervicovaginal epithelial cell monolayers were more susceptible to the effects of LiJ with 8.8% juice causing 50% toxicity after 5
minutes. Reconstructed stratified cervicovaginal epithelium appeared more resilient to LiJ toxicity with 30 minutes exposure to 50% LiJ having little effect on viability. However viability was reduced by 75% and 90% following 60 and 120 minutes exposure. Furthermore, repeat application (several times daily) of 25% LiJ caused 80â90% reduction in viability.
Conclusion: These data demonstrate that the virucidal activity of LiJ is severely compromised in the presence of seminal plasma. Potentially, to be effective against HIV in vivo, women would need to apply a volume of neat LiJ equal to that of an ejaculate, and maintain this ratio vaginally for 5â30 minutes after ejaculation. Data presented here suggest that this would have significant adverse
effects on the genital mucosa. These data raise serious questions about the plausibility and safety of such a prevention approach
An Overview of Rift Valley Fever Vaccine Development Strategies.
Rift Valley fever (RVF) is a mosquito-borne viral zoonosis that causes high fetal and neonatal mortality in ruminants and a mild to fatal hemorrhagic fever in humans. There are no licensed RVF vaccines for human use while for livestock, commercially available vaccines are all either live attenuated or inactivated and have undesirable characteristics. The live attenuated RVF vaccines are associated with teratogenicity and residual virulence in ruminants while the inactivated ones require multiple immunisations to induce and maintain protective immunity. Additionally, nearly all licensed RVF vaccines lack the differentiating infected from vaccinated animals (DIVA) property making them inappropriate for use in RVF nonendemic countries. To address these limitations, novel DIVA-compatible RVF vaccines with better safety and efficacy than the licensed ones are being developed, aided fundamentally by a better understanding of the molecular biology of the RVF virus and advancements in recombinant DNA technology. For some of these candidate RVF vaccines, sterilizing immunity has been demonstrated in the discovery/feasibility phase with minimal adverse effects. This review highlights the progress made to date in RVF vaccine research and development and discusses the outstanding research gaps
Blockade of Attachment and Fusion Receptors Inhibits HIV-1 Infection of Human Cervical Tissue
Identification of cellular factors involved in HIV-1 entry and transmission at mucosal surfaces is critical for understanding viral pathogenesis and development of effective prevention strategies. Here we describe the evaluation of HIV-1 entry inhibitors for their ability to prevent infection of, and dissemination from, human cervical tissue ex vivo. Blockade of CD4 alone or CCR5 and CXCR4 together inhibited localized mucosal infection. However, simultaneous blockade of CD4 and mannose-binding C-type lectin receptors including dendritic cellâspecific intercellular adhesion moleculeâgrabbing integrin was required to inhibit HIV-1 uptake and dissemination by migratory cells. In contrast, direct targeting of HIV-1 by neutralizing mAb b12 and CD4-IgG2 (PRO-542) blocked both localized infection and viral dissemination pathways. Flow cytometric analysis and immunostaining of migratory cells revealed two major populations, CD3+HLA-DRâ and CD3âHLA-DR+ cells, with a significant proportion of the latter also expressing dendritic cellâspecific intercellular adhesion moleculeâgrabbing integrin. Bead depletion studies demonstrated that such HLA-DR+ cells accounted for as much as 90% of HIV-1 dissemination. Additional studies using immature monocyte-derived dendritic cells demonstrated that although mannose-binding C-type lectin receptors and CD4 are the principal receptors for gp120, other mechanisms may account for virus capture. Our identification of the predominant receptors involved in HIV-1 infection and dissemination within human cervical tissue highlight important targets for microbicide development
Degradable glycopolymers for saRNA transfection
Gene delivery is a powerful technique that is often exploited in the treatment of several diseases. Currently, most gene vectors are expensive virus-based systems, which can trigger immune responses. As a cheaper and safer alternative to these systems, biodegradable polymers have been widely used to develop gene delivery systems due to their different desirable characteristics. In particular, poly(amido amine)s possess critical desirable characteristics, such as high cell transfection activity, that make them suitable and efficient for gene delivery. In this study, reducible poly(amido amine)s with different side chain lengths and glycopolymers have been developed to create polyplexes with self-amplifying RNA (saRNA). The cell transfection assay showed that sugar decorated poly(amido amine)s revealed better saRNA transfection activity than other non-decorated poly(amido amine)s. Nevertheless, no differences were obtained between the poly(amido amine)s with different side chain lengths. Overall, biodegradable poly(amido amine)s with different alcohols and sugars have been synthesized with high molecular weights and low molecular weight distributions to develop an optimal saRNA delivery system
Poly(2-oxazoline)/saRNA polyplexes for targeted and nonviral gene delivery
RNA delivery has been demonstrated to be a potent method of vaccine delivery, as demonstrated by the recent success of the COVID-19 vaccines. Polymers have been shown to be effective vehicles for RNA delivery, with polyÂ(ethylene imine) (PEI) being the current gold standard for delivery. Nonetheless, PEI has toxicity concerns, and so finding alternatives is desirable. PolyÂ(2-oxazoline)Âs are a promising alternative to PEI, as they are generally biocompatible and offer a high degree of control over the polymer structure. Here, we have synthesized an ionizable primary amine 2-oxazoline and combined it with a double bond containing oxazoline to synthesize a small library of charged statistical and block copolymers. The pendant double bonds were reacted further to decorate the polymers with glucose via a thiolâene click reaction. All polymers were shown to have excellent cell viability, and the synthesized block polymers showed promising complexation efficiencies for the saRNA, demonstrating a clear structureâproperty relationship. The polymer transfection potential was tested in various cell lines, and a polymer composition with an amine/glucose ratio of 9:27 has demonstrated the best transfection potential across all cell lines tested. Overall, the results suggest that block polymers with a cationic segment and high levels of glycosylation have the best complexation efficiency and RNA expression levels
Superior efficacy of a human immunodeficiency virus vaccine combined with antiretroviral prevention in simian-human immunodeficiency virus-challenged nonhuman primates
International audienc
Induction of innate cytokine responses by respiratory mucosal challenge with R848 in zebrafish, mice, and humans.
We compared live zebrafish, mouse and human nasal challenge responses to the TLR7/8 agonist resiquimod (R848). We found remarkably similar induction of mediators in the three species, offering novel mucosal models of innate anti-viral immunity
- âŠ