3 research outputs found

    Opening the black box: spatial transcriptomics and the relevance of AI-detected prognostic regions in high grade serous carcinoma

    No full text
    Image based deep learning models are used to extract new information from standard H&E pathology slides, however, biological interpretation of the features detected by artificial intelligence (AI) remains a challenge. High-grade serous ovarian carcinoma (HGSC) is characterized by aggressive behavior and chemotherapy resistance, but also by striking variability in outcome. Our understanding of this disease is limited, partly due to considerable tumor heterogeneity. We previously trained an AI model to identify HGSC tumor regions that are highly associated with outcome status but are indistinguishable by conventional morphologic methods. Here we applied spatial transcriptomics to further profile the AI-identified tumor regions in 16 patients (8 per outcome group) and identify molecular features related to disease outcome in patients who underwent primary debulking surgery and platinum-based chemotherapy. We examined FFPE tissue from 1) regions identified by the AI model as highly associated with short or extended chemotherapy response, and 2) background tumor regions (not identified by the AI model as highly associated with outcome status) from the same tumors. We show that the transcriptomic profiles of AI-identified regions are more distinct than background regions from the same tumors, are superior in predicting outcome, and differ in several pathways including those associated with chemoresistance in HGSC. Further, we find that poor outcome and good outcome regions are enriched by different tumor subpopulations, suggesting distinctive interaction patterns. In summary, our work presents proof of concept that AI-guided spatial transcriptomic analysis improves recognition of biologic features relevant to patient outcome.Peer reviewe

    Spatially resolved multiomics on the neuronal effects induced by spaceflight in mice

    No full text
    Abstract Impairment of the central nervous system (CNS) poses a significant health risk for astronauts during long-duration space missions. In this study, we employed an innovative approach by integrating single-cell multiomics (transcriptomics and chromatin accessibility) with spatial transcriptomics to elucidate the impact of spaceflight on the mouse brain in female mice. Our comparative analysis between ground control and spaceflight-exposed animals revealed significant alterations in essential brain processes including neurogenesis, synaptogenesis and synaptic transmission, particularly affecting the cortex, hippocampus, striatum and neuroendocrine structures. Additionally, we observed astrocyte activation and signs of immune dysfunction. At the pathway level, some spaceflight-induced changes in the brain exhibit similarities with neurodegenerative disorders, marked by oxidative stress and protein misfolding. Our integrated spatial multiomics approach serves as a stepping stone towards understanding spaceflight-induced CNS impairments at the level of individual brain regions and cell types, and provides a basis for comparison in future spaceflight studies. For broader scientific impact, all datasets from this study are available through an interactive data portal, as well as the National Aeronautics and Space Administration (NASA) Open Science Data Repository (OSDR)

    Neuroprosthetic baroreflex controls haemodynamics after spinal cord injury

    No full text
    Spinal cord injury (SCI) induces haemodynamic instability that threatens survival(1-3), impairs neurological recovery(4,5), increases the risk of cardiovascular disease(6,7), and reduces quality of life(8,9). Haemodynamic instability in this context is due to the interruption of supraspinal efferent commands to sympathetic circuits located in the spinal cord(10), which prevents the natural baroreflex from controlling these circuits to adjust peripheral vascular resistance. Epidural electrical stimulation (EES) of the spinal cord has been shown to compensate for interrupted supraspinal commands to motor circuits below the injury(11), and restored walking after paralysis(12). Here, we leveraged these concepts to develop EES protocols that restored haemodynamic stability after SCI. We established a preclinical model that enabled us to dissect the topology and dynamics of the sympathetic circuits, and to understand how EES can engage these circuits. We incorporated these spatial and temporal features into stimulation protocols to conceive a clinical-grade biomimetic haemodynamic regulator that operates in a closed loop. This 'neuroprosthetic baroreflex' controlled haemodynamics for extended periods of time in rodents, non-human primates and humans, after both acute and chronic SCI. We will now conduct clinical trials to turn the neuroprosthetic baroreflex into a commonly available therapy for people with SCI
    corecore