1,470 research outputs found

    Cocrystal formation by Ionic liquid-assisted grinding: Case study with cocrystals of caffeine

    Get PDF
    iquid assisted grinding using imidazolium-based ionic liquids (IL-AG) was found to be effective in isolation of cocrystals and cocrystal polymorphs. Isolation of specific polymorphs of caffeine–citric acid (CAF–CA) and caffeine–glutaric acid (CAF–GLU) cocrystals highlights the tunability of ILs in polymorphic control

    Agarose processing in protic and mixed protic–aprotic ionic liquids : dissolution, regeneration and high conductivity, high strength ionogels

    Get PDF
    We have shown that low viscosity alkyl or hydroxyalkyl ammonium formate (ILs) can dissolve agarose, and higher dissolution can be achieved in the mixed, alkyl or hydroxyalkyl ammonium + imidazolium or pyridinium ILs. The polarity parameters α, β, π*, ET(30) and ETN of these IL systems were measured to explain their dissolution ability for agarose. Dissolved agarose was either regenerated using methanol as a precipitating solvent or ionogels were formed by cooling the agarose–IL solutions to ambient temperature. Exceptionally high strength ionogels were obtained from the agarose solutions in N-(2-hydroxyethyl)-ammonium formate or its mixture with 1-butyl-3-methylimidazolium chloride. Regenerated material and ionogels are characterized for their possible degradation/conformational changes and gel properties (thermal hysteresis, strength, viscoelasticity and conductivity) respectively. A high strength, high conducting ionogel was demonstrated to be able to build an electrochromic window. Such ionogels can also be utilized for other soft matter electronic devices and biomedical applications

    Monoidal computer III: A coalgebraic view of computability and complexity

    Full text link
    Monoidal computer is a categorical model of intensional computation, where many different programs correspond to the same input-output behavior. The upshot of yet another model of computation is that a categorical formalism should provide a much needed high level language for theory of computation, flexible enough to allow abstracting away the low level implementation details when they are irrelevant, or taking them into account when they are genuinely needed. A salient feature of the approach through monoidal categories is the formal graphical language of string diagrams, which supports visual reasoning about programs and computations. In the present paper, we provide a coalgebraic characterization of monoidal computer. It turns out that the availability of interpreters and specializers, that make a monoidal category into a monoidal computer, is equivalent with the existence of a *universal state space*, that carries a weakly final state machine for any pair of input and output types. Being able to program state machines in monoidal computers allows us to represent Turing machines, to capture their execution, count their steps, as well as, e.g., the memory cells that they use. The coalgebraic view of monoidal computer thus provides a convenient diagrammatic language for studying computability and complexity.Comment: 34 pages, 24 figures; in this version: added the Appendi

    Understanding the structural disorganization of starch in water-ionic liquid solutions

    Get PDF
    Using synchrotron X-ray scattering analyses and Fourier transform infrared spectroscopy, this work provides insights into the solvent effects of water : [C2mim][OAc] solutions on the disorganization of a starch semi-crystalline structure. When a certain ratio (10.2 : 1 mol/mol) of water : [C2mim][OAc] solution is used, the preferential hydrogen bonding between starch hydroxyls and [OAc]− anions results in the breakage of the hydrogen bonding network of starch and thus the disruption of starch lamellae. This greatly facilitates the disorganization of starch, which occurs much easier than in pure water. In contrast, when 90.8 : 1 (mol/mol) water : [C2mim][OAc] solution is used, the interactions between [OAc]− anions and water suppress the solvent effects on starch, thereby making the disorganization of starch less easy than in pure water. All these differences can be shown by changes in the lamellar and fractal structures: firstly, a preferable increase in the thickness of the crystalline lamellae rather than that of the amorphous lamellae causes an overall increase in the thickness of the semi-crystalline lamellae; then, the amorphous lamellae start to decrease probably due to the out-phasing of starch molecules from them; this forms a fractal gel on a larger scale (than the lamellae) which gradually decreases to a stable value as the temperature increases further. It is noteworthy that these changes occur at temperatures far below the transition temperature that is thermally detectable as is normally described. This hints to our future work that using certain aqueous ionic liquids for destructuration of the starch semi-crystalline structure is the key to realize green processes to obtain homogeneous amorphous materials

    Different characteristic effects of ageing on starch-based films plasticised by 1-ethyl-3-methylimidazolium acetate and by glycerol

    Get PDF
    The focus of this study was on the effects of plasticisers (the ionic liquid 1-ethyl-3-methylimidazolium acetate, or [Emim][OAc]; and glycerol) on the changes of starch structure on multiple length scales, and the variation in properties of plasticised starch-based films, during ageing. The films were prepared by a simple melt compression moulding process, followed by storage at different relative humidity (RH) environments. Compared with glycerol, [Emim][OAc] could result in greater homogeneity in [Emim][OAc]-plasticised starch-based films (no gel-like aggregates and less molecular order (crystallites) on the nano-scale). Besides, much weaker starch-starch interactions but stronger starch-[Emim][OAc] interactions at the molecular level led to reduced strength and stiffness but increased flexibility of the films. More importantly, [Emim][OAc] (especially at high content) was revealed to more effectively maintain the plasticised state during ageing than glycerol: the densification (especially in the amorphous regions) was suppressed; and the structural characteristics especially on the nano-scale were stabilised (especially at a high RH), presumably due to the suppressed starch molecular interactions by [Emim][OAc] as confirmed by Raman spectroscopy. Such behaviour contributed to stabilised mechanical properties. Nonetheless, the crystallinity and thermal stability of starch-based films with both plasticisers were much less affected by ageing and moisture uptake during storage (42 days), but mostly depended on the plasticiser type and content. As starch is a typical semi-crystalline bio-polymer containing abundant hydroxyl groups and strong hydrogen bonding, the findings here could also be significant in creating materials from other similar biopolymers with tailored sensitivity and properties to the environment

    Facile preparation of starch-based electroconductive films with ionic liquid

    Get PDF
    Here, we discovered that starch could be straightforwardly processed into optically-transparent electroconductive films, by compression molding at a relatively mild temperature (55 °C or 65 °C), much lower than those commonly used in biopolymer melt processing (typically over 150 °C). Such significantly-reduced processing temperature was achieved with the use of an ionic liquid plasticizer, 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]). A higher [C2mim][OAc] content, lower processing temperature (55 °C), and/or higher relative humidity (RH) (75%) during the sample post-processing conditioning, suppressed the crystallinity of the processed material. The original A-type crystalline structure of starch was eliminated, although small amounts of B-type and V-type crystals were formed subsequently. The starch crystallinity could be linked to the mechanical properties of the films. Moreover, the processing destroyed the original lamellar structure of starch, and the amorphous starch processed with [C2mim][OAc]/water could aggregate on the nanoscale. The films displayed excellent electrical conductivity (> 10−3 S/cm), which was higher with a lower processing temperature (55 °C) and a higher conditioning RH (75%). The incorporation of [C2mim][OAc] reduced the thermal decomposition temperature of starch by 30 °K, while the formulation and processing conditions did not affect the film thermal stability

    Characteristics of starch-based films with different amylose contents plasticised by 1-ethyl-3-methylimidazolium acetate

    Get PDF
    Starch-based films plasticised by an ionic liquid, 1-ethyl-3-methylimidazolium acetate ([Emim][OAc]), were prepared by a simple compression moulding process, facilitated by the strong plasticisation effect of [Emim][OAc]. The effects of amylose content of starch (regular vs. high-amylose maize) and relative humidity (RH) during ageing of the samples on a range of structural and material characteristics were investigated. Surprisingly, plasticisation by [Emim][OAc] made the effect of amylose content insignificant, contrary to most previous studies when other plasticisers were used. In other words, [Emim][OAc] changed the underlying mechanism responsible for mechanical properties from the entanglement of starch macromolecules (mainly amylose), which has been reported as a main responsible factor previously. The crystallinity of the plasticised starch samples was low and thus was unlikely to have a major contribution to the material characteristics, although the amylose content impacted on the crystalline structure and the mobility of amorphous parts in the samples to some extent. Therefore, RH conditioning and thus the sample water content was the major factor influencing the mechanical properties, glass transition temperature, and electrical conductivity of the starch films. This suggests the potential application of ionic liquid-plasticised starch materials in areas where the control of properties by environmental RH is desired

    Access flight hardware design and development

    Get PDF
    Several items were found to be of immense value in the design and development of the Assembly Concept for Construction of Erectable Space Structures (ACCESS) hardware. The early availability of mock-up and engineering test hardware helped to develop the concept and prove the feasibility of the experiment. The extensive neutral buoyancy testing was invaluable in developing the procedures and timelines, proving that the hardware functioned as intended, and effectively trained the astronauts. The early involvement of the crew systems/astronaut personnel was extremely beneficial in shaping the design to meet the EVA compatibility requirements. Also, the early definition of coupled loads and on-orbit dynamic responses can not be overemphasized due to the relative uncertainty in the magnitude of these loads and their impact on the design
    corecore