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ABSTRACT: Here, we discovered that starch could be straightforwardly processed into 

optically-transparent electroconductive films, by compression molding at a relatively mild 

temperature (55 °C or 65 °C), much lower than those commonly used in biopolymer melt 

processing (typically over 150 °C). Such significantly-reduced processing temperature was 

achieved with the use of an ionic liquid plasticizer, 1-ethyl-3-methylimidazolium acetate 

([C2mim][OAc]). A higher [C2mim][OAc] content, lower processing temperature (55 °C), and/or 

higher relative humidity (RH) (75%) during the sample post-processing conditioning, suppressed 

the crystallinity of the processed material. The original A-type crystalline structure of starch was 

eliminated, although small amounts of B-type and V-type crystals were formed subsequently. 

The starch crystallinity could be linked to the mechanical properties of the films. Moreover, the 

processing destroyed the original lamellar structure of starch, and the amorphous starch 

processed with [C2mim][OAc]/water could aggregate on the nanoscale. The films displayed 

excellent electrical conductivity (> 10−3 S/cm), which was higher with a lower processing 

temperature (55 °C) and a higher conditioning RH (75%). The incorporation of [C2mim][OAc] 

reduced the thermal decomposition temperature of starch by 30 °K, while the formulation and 

processing conditions did not affect the film thermal stability. 
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INTRODUCTION 

Nowadays, bio- or “green” materials from renewable resources are increasingly selected 

for reasons of environmental sustainability and carbon impact.1 Biopolymers can be 

referred to as polymers directly from biomass, a natural, abundant and underutilized 

source of renewable feedstocks, which principally are cellulose, hemicellulose, chitin, 

starch, and lignin. Biopolymers are not only widely available and sustainable, but also can 

be biodegradable and biocompatible, and thus have several economic and environmental 

advantages. Moreover, the societal recognition and expectation for environmentally-

friendly products create a demand for technically advantageous materials that can replace 

petroleum-derived plastics. 

The application of biopolymers heavily relies on their processability into usable forms. 

However, the processing of biopolymers is somewhat challenging due to the strong 

intermolecular hydrogen bonding in their native forms,2 and the processing conditions 

usually depend on the identity of the biopolymer. Traditionally, for the film formation, 

biopolymers have been mostly processed by solution methods (casting), based on a film-

forming solution (more rare, dispersion) where biopolymers are first solubilized into a 

liquid phase. Organic solvent systems, capable of disruption of hydrogen bonding (e.g., 

DMF, DMAc), are utilized, which, after casting of the film, are removed  (usually by 

drying at a higher temperature).3 However, these methods are much less efficient and less 

suitable for industrial-scale production due to significant use of corrosive solvent systems. 

In another method of film casting, ionic liquids (ILs, salts that melt below 100 oC) are 

used in place of VOCs, to solubilize biopolymers. Thus, we have recently shown that 

reproducible, strong, and versatile cellulose4-5 or chitin films,6 made from either 
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 4

biopolymer alone or combined with other polymer(s), can be prepared through the 

dissolution of biopolymer in 1-ethyl-3-methylimidazolium ([C2mim][OAc]) ionic liquid 

(IL) followed by the casting of films and washing out the solvent. Films prepared using 

this methodology can be prepared with the controlled composition, thickness, surface 

properties, flexibility, and transparency. 

While the melt processing of biopolymers has also been practiced,7-9 high processing 

temperature, high viscosity, and easy thermal decomposition during processing remains to 

be challenges.3, 10-11 With chemical modification, biopolymers can be converted into 

soluble forms (e.g., cellulose acetate) or derivatives that are more processable (e.g., 

hydroxypropyl starch). Nevertheless, such conversion not only increases the costs but also 

modifies the inherent properties of the biopolymers. Besides, for promoting 

environmental sustainability and reducing carbon impact, people have put more emphasis 

on material production technologies requiring less energy input.  

To this end, plasticizers that are effective in disrupting the native hydrogen-bonding 

network of biopolymers could provide solutions for the easier and “greener” treatment of 

biopolymers. Starch, a polysaccharide found in plants such as maize (corn), potato, 

cassava, wheat, and rice, represents a typical model with a naturally complex structure 

involving strong intermolecular hydrogen bonding. In the native form of granules 

(<1 µm~100 µm), starch has a multi-level hierarchical structure, which is based on two 

major biomacromolecules, amylose (mainly linear) and amylopectin (hyper-branched) 

(~nm). Nevertheless, between the granule and molecular levels, there are alternating 

amorphous and semicrystalline shells (growth rings) (100~400 nm), with the latter shell 

being stacked crystalline and amorphous lamellae (periodicity) (9~10 nm).12-15 Therefore, 
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 5

it is important to understand how the complex structure of starch can be altered to achieve 

the desired plasticized forms. 

With a plasticizer and elevated temperature, a process known as “gelatinization” (with 

abundant plasticizer content) or “melting” (with limited plasticizer content) occurs, 

resulting in a disruption of the 3D structure of native starch. If preferential conditions are 

reached, this process can lead to a homogeneous amorphous material known as 

“thermoplastic starch (TPS)” or “plasticized starch,” which is essential in the production 

of some starch-based materials.3, 10-11, 16 For the dissolution of starch, in particular, water 

is the most commonly-used solvent, although the process does not take place at room 

temperature resulting only in starch swelling, and high temperatures are needed for its 

complete dissolution;17-18 yet, phase separation often occurs. Such phase separation (i.e., 

heterogeneous conditions) makes aqueous systems to be unfavorable for starch 

processing. Substances such as polyols (e.g., glycerol, glycol, sorbitol), compounds 

containing nitrogen (e.g., urea, ammonium derived, amines), and citric acid have been 

reported to be effective for the plasticization of starch,3, 10 but not for its dissolution. 

Other well-known solvents for starch is dimethyl sulfoxide (DMSO),19 often with the 

addition of salts such as calcium chloride (CaCl2),
20 urea/alkali (NaOH) aqueous 

solution,21 concentrated mineral and organic acids,22 ethylene diamine,23 pyridine,24 or 

N,N-dimethylacetamide (DMAc)/lithium chloride (LiCl) system.25-26 These solvents are 

corrosive, toxic, often hydrolyze polymer decreasing its molecular weight (MW), many 

are unsuitable for biomedical applications, often volatile, and usually difficult to recycle.  

A plasticizer for starch should preferably be thermally-stable and non-volatile both 

during thermal processing and in post-processing stages, be ineffective in enhancing 
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 6

starch macromolecular degradation, be non-toxic to humans and the environment, and be 

able to promote starch-based materials with enhanced performance and new capabilities. 

Unfortunately, commonly used plasticizers do not yet have all the desired attributes and 

thus finding alternative and better plasticizers for starch is of interest. By avoiding many 

of the reactive chemicals and facilitating a physical dissolution process, ionic liquids (ILs) 

overcome the disadvantages of “conventional” dissolution/plasticization practices.27 

ILs that contain a strongly basic, hydrogen bond accepting anion (e.g., carboxylates or 

halides) have the ability to wholly or partially disrupt the intermolecular hydrogen 

bonding present in biopolymeric networks. As a result, ILs are demonstrated to either 

fully dissolve or plasticize many biopolymers such as starch,28-32 cellulose,33-34 

chitin/chitosan,35-37 silk fibroin,38-40 lignin,41 zein protein,28 and wool keratin.42 As such, 

these ILs can be used as excellent media for polysaccharide plasticization and 

modification resulting in the development of advanced biomaterials, such as ionically 

conducting polymers or solid polymer electrolytes.43-50 For example, 1-ethyl-3-

methylimidazolium acetate ([C2mim][OAc]) has desirable properties, e.g., low toxicity 

(LD50 > 2000 mg·kg−1), low corrosiveness, low melting point (< −20 °C), low viscosity 

(10 mPa·s at 80 °C), and favorable biodegradability.51 

For the processing of polysaccharides with ILs, solution methods were predominantly 

involved in previous studies. Sankri et al.
52 and Leroy et al.

53 have done pioneering work 

using an IL 1-butyl-3-methylimidazolium chloride ([C4mim][Cl]) as a new plasticizer for 

melt processing of starch-based materials, which demonstrated improved plasticization, 

electrical conductivity, and hydrophobicity. Our previous work54 has shown that 

[C2mim][OAc] has a significant plasticization effect on starch, including high-amylose 
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starch, prepared via a thermal compression molding process, and can reduce the 

crystallinity and make the amorphous phase more mobile leading to desirable properties 

for some specific applications (e.g., electrically-conductive materials). However, in these 

past efforts, a high temperature (up to 160 °C) and/or multiple processing steps were 

required to fabricate starch-based films. Such high-temperature conditions make it 

difficult to incorporate thermally-sensitive ingredients (such as bioactive ingredients and 

enzymes) into starch-based materials. 

In contrast to the previous work, this paper reports a facile and energy-saving process 

to create starch-based electrically-conductive films. In this research, the one-step 

compression molding process required only a mild temperature (55 °C or 65 °C) to 

transform native starch into a transparent material with electrical conductivity. 

Furthermore, we revealed that the structure and properties of the resultant material could 

be easily tailored by the formulation and processing conditions. 

EXPERIMENTAL SECTION 

Materials 

A chemically-unmodified regular maize starch (RMS) was supplied by New Zealand 

Starch Ltd. (Onehunga, Auckland, New Zealand) with the product name “Avon Maize 

Starch”. This starch has an amylose content of 24.4%.55 The original moisture content 

(MC) of this starch was 13.6 wt.% as measured by a Satorius Moisture Analyser (Model 

MA30, Sartorius Weighing Technology GmbH, Weender Landstraβe 94-108, 37075, 

Goettingen, Germany). Milli-Q water was used in all instances. [C2mim][OAc] of 

≥95wt% purity (with ca. 1200 ppm water content), produced by IoLiTec Ionic Liquids 
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Technologies GmbH (Salzstraβe 184, D-74076 Heilbronn, Germany) was also supplied 

by Chem-Supply Pty Ltd.  

[C2mim][OAc]-aqueous solutions: [C2mim][OAc] is a liquid completely miscible with 

water at room temperature.56 In this work, 0.15:1 mol/mol [C2mim][OAc]:water solution 

was prepared, where this mole ratio accounted for the MC of starch and the purity and 

MC of the IL. 

Film preparation 

Two formulations were used for the film preparation (see Table S1 and S2 in Support 

Information (SI)). 0.15:1 mol/mol [C2mim][OAc]:water solution was added drop-wise to 

the starch, accompanied by careful blending using a mortar and pestle to ensure an even 

distribution of the liquid mixture in the starch. Then, the blended samples were 

hermetically sealed and stored in Ziploc® bags under ambient conditions (ca. 28 °C) for at 

least 4 h, before thermal compression molding. The storage allowed time for further 

equilibration of the samples. The blended sample was carefully and uniformly spread over 

the molding area with poly(tetrafluoroethylene) glass fabrics (Dotmar EPP Pty Ltd, 

Acacia Ridge, Qld, Australia) located between the starch and the mould. Then, 

compression molding was undertaken at a specific temperature (55 °C or 65 °C) under 

pressure (8 MPa) for 30 min. After opening the mold, an optically transparent sample 

(9 cm × 6 cm, thickness ca. 1.2 mm) could be retrieved. The films were conditioned at 

two different relative humidities (RH), 33% (over-saturated magnesium chloride solution) 

and 75% (over-saturated sodium chloride solution),57 at room temperature in desiccators 

for 7 days before material characterizations. From the sample preparation to conditioning, 

no observation indicated that [C2mim][OAc] phased out of the starch films. This 
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 9

suggested a strong binding between [C2mim][OAc] and the starch. The MCs in the 

samples were subject to change during conditioning. After the conditioning, the thickness 

of all films was ca. 1 mm. Table 1 shows the compositions in mass and mole ratios after 

conditioning. The MCs were determined by weighing the samples before and after 

vacuum-oven drying at 100 °C for 48 h to remove all the moisture.  

Table 1. Mass and mole ratios of different starch-[C2mim][OAc] films 

Sample Mass ratio  
Mole ratio of IL and water content relative to 

hydroxyl groups (−OH) in starch 

 
Starch (dry 

basis) 
[C2mim][OAc] water  

Starch 

hydroxyl 
[C2mim][OAc] water 

IL18-T55-H33 99.36 ± 0.00 60 ± 0 28.59 ± 0.20  1 ± 0 0.18 ± 0.00 0.86 ± 0.01 

IL18-T55-H75 99.36 ± 0.00 60 ± 0 55.06 ± 0.99  1 ± 0 0.18 ± 0.00 1.66 ± 0.03 

IL18-T65-H33 99.36 ± 0.00 60 ± 0 28.54 ± 0.58  1 ± 0 0.18 ± 0.00 0.86 ± 0.02 

IL18-T65-H75 99.36 ± 0.00 60 ± 0 54.78 ± 0.40  1 ± 0 0.18 ± 0.00 1.65 ± 0.01 

IL21-T55-H33 86.40 ± 0.00 60 ± 0 29.44 ± 0.49  1 ± 0 0.21 ± 0.00 1.02 ± 0.02 

IL21-T55-H75 86.40 ± 0.00 60 ± 0 53.72 ± 0.56  1 ± 0 0.21 ± 0.00 1.87 ± 0.02 

IL21-T65-H33 86.40 ± 0.00 60 ± 0 30.11 ± 0.19  1 ± 0 0.21 ± 0.00 1.05 ± 0.01 

IL21-T65-H75 86.40 ± 0.00 60 ± 0 53.95 ± 0.41  1 ± 0 0.21 ± 0.00 1.87 ± 0.01 

 

In the following text, the plasticized starch samples are coded in the format of “IL18-

T55-H33”, where “IL18” denotes the IL content (0.18) in a mole ratio relative to starch 

hydroxyls (see SI Table S2), “T55” shows the temperature used for compression molding, 

and “H33” indicates the relative humidity (RH) for conditioning.  

Characterization 
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Sample compositions. The MCs were determined gravimetrically. Namely, the 

samples were placed in a vacuum oven at 100 °C for 48 h, which allowed the removal of 

all the moisture. The samples were weighed before and after the oven drying to estimate 

the MCs. At least three replicates were used for determining the MC of each sample.  

Scanning electron microscopy (SEM). The starch samples were cryo-ground in liquid 

nitrogen. The fractures were put on circular metal stubs previously covered with double-

sided adhesive before platinum coating at 5 nm thickness using an Eiko Sputter Coater, 

under vacuum (7 × 10−3 bar). The morphology of the starch samples was examined using 

a scanning electron microscope (SEM, JEOL JSM-6460LA, Tokyo, Japan). An 

accelerating voltage of 5 kV and a spot size of 6 nm were used. A magnification of 1000× 

was used for all the images.  

Powder X-ray diffraction (pXRD). The starch film samples (size ca. 2 cm × 2 cm) 

were placed in the sample holder of a X-ray powder diffractometer (D8 Advance, Bruker 

AXS Inc., Madison, WI, USA) equipped with a graphite monochromator, a copper target, 

and a scintillation counter detector. pXRD patterns were recorded for an angular range 

(2θ) of 4–40°, with a step size of 0.02° and a step rate of 0.5 s per step, and thus the scan 

time lasted for approximately 15 min. The radiation parameters were set at 40 kV and 

30 mA, with a slit of 2 mm. Traces were processed using the Diffrac Plus Evaluation 

Package (Version 11.0, Bruker AXS Inc., Madison, WI, USA) to determine the X-ray 

diffractograms of the samples. The degree of crystallinity was calculated with the PeakFit 

software (Version 4.12, Systat Software, Inc., San Jose, CA, USA) following the method 

by Lopez-Rubio, et al. 58 Eq. (1): 
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where Aci is the area under each crystalline peak with index i, and At is the total area (both 

amorphous background and crystalline peaks) under the diffractogram. 

The V-type crystallinity (single-helical amylose structure) was quantitatively estimated 

based on the total crystalline peak areas at 7.5°, 13°, and 20° following the method 

provided in reference.59 

Attenuated total reflectance Fourier-transform infrared (ATR-FTIR) 

spectroscopy. The ATR-FTIR spectra of different starch samples were recorded using a 

Nicolet 5700 FTIR spectrometer (Thermo Electron Corporation, Madison, WI, USA) 

equipped with a Nicolet Smart Orbit attenuated total reflectance (ATR) accessory 

incorporating a diamond internal reflection element. For each spectrum, 64 scans were 

recorded over the range of 4000–600 cm−1 at RT (about 22 °C) at a resolution of 4 cm−1, 

co-added and Fourier-transformed. The background spectrum was recorded on air and 

subtracted from the sample spectrum. ATR-FTIR spectra were baseline-corrected and 

deconvoluted using PeakFit (v4.12). The ratio of band intensities at 995 cm−1 and 

1022 cm−1 was used for analyzing the film molecular rearrangement. 

Synchrotron small-angle X-ray scattering (SAXS). SAXS analysis was carried out 

on the SAXS/WAXS beamline (flux, 1013 photons/s) at the Australian Synchrotron 

(Clayton, Vic., Australia), at a wavelength λ = 1.47 Å. The 2D scattering patterns were 

collected using a Pilatus 1M camera (active area 169 × 179 mm; and pixel size 172 × 

Page 11 of 43

ACS Paragon Plus Environment

ACS Sustainable Chemistry & Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 12

172 µm). The scatterBrain software was used to acquire the one-dimensional (1D) data 

from the 2D scattering pattern; and the data in the angular range of 0.0015 < q < 0.15 Å−1 

was used as the SAXS pattern, in which q = 4πsinθ/λ (where 2θ is the scattering angle and 

λ is the wavelength of the X-ray source).60-61 All data were background subtracted and 

normalized. The starch-based films were placed on a multi-well stage provided by the 

Australian Synchrotron, and then the SAXS data recorded for an acquisition time of 1 s.  

For the SAXS patterns, the inflection data centered at around 0.007 Å−1 were fitted 

using a unified model Eq. (2):62 

 

 

3

2 2 6
( ) exp

3

g

g

qR
erf

R q
I q G C

q

α
   
        = − +    

   
 
 

   (2)  

 

In this equation, G is the pre-factor of the Guinier function corresponding to a radius Rg; 

and C and α are the pre-factor and the exponent of the power-law function, respectively.  

Tensile testing. Tensile tests were performed with an Instron® 5543 universal testing 

machine (Instron Pty Ltd, Bayswater, Vic., Australia) with a 500N load cell on dumbbell-

shaped specimens cut from the sheets with a constant deformation rate of 10 mm/min at 

room temperature. The specimens corresponded to Type 4 of the Australian Standard AS 

1683:11 (ISO 37:1994), and the testing section of each specimen was 12 mm in length 

and 2 mm in width. Young’s modulus (E), tensile strength (σt), and elongation at break 

(εb) were determined by the Instron® software, from at least 7 specimens for each of the 

plasticized starch samples. 
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Thermogravimetric analysis (TGA). A Mettler Toledo TGA/DSC1 machine 

(Mettler-Toledo Ltd., Port Melbourne, Vic., Australia) was used with 40 µL aluminum 

crucibles with a cap with a pinhole for thermogravimetric analysis (TGA) under nitrogen. 

This equipment was calibrated using the melting points of Au, Zn and In standards 

(1064 °C, 419.5 °C, and 155.6 °C, respectively). A sample mass of about 5 mg was used 

for each run. The samples were heated from 25 °C to 550 °C and measured in the 

dynamic heating regime, using a constant heating ramp of 3 K/min. 

Electrical conductivity. An alternating current (AC) impedance spectroscopy method 

was used to measure the proton conductivity of each film in a conductivity cell. The 

resistance of the films was probed by a frequency response analyzer (FRA, CompactStat, 

Ivium Technologies B. V., The Netherlands) with an oscillating voltage of 20 mV over a 

frequency range of 1 MHz − 1 Hz. The conductivity of starch films was tested at room 

temperature (ca. 26 °C) at a RH of 33% or 75% using a Model 740 Membrane Testing 

System (MTS, Scribner Associates, Inc., Southern Pines, NC, USA). A 15 min 

equilibration time was used at each RH before the measurement. The conductivity (σ, 

S/cm) of the film samples was calculated using Eq. (3): 

 

 

l

A R
σ =

×      (3) 

 

where l (cm) is the film thickness, A (cm2) the film area, and R (Ω) the film resistance. 

RESULTS AND DISCUSSION 

Sample compositions 
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Table 1 shows the composition (in mass ratios and mole ratios) of different 

[C2mim][OAc]-plasticized starch-based films. The MC of the film was adjusted using 

conditioning at a certain RH in a humidity chamber (see Experimental). At the same RH, 

a higher MC could result from a higher [C2mim][OAc] content in the film (see SI Table 

S1 and S2 for the original formulations for sample preparation). These phenomena could 

be ascribed to the strong hydrophilicity of [C2mim][OAc], which had a stronger affinity 

to water than to starch hydroxyls, and played the major role in the moisture absorption of 

the films from the environment.63 As the electrical conductivity of starch-[C2mim][OAc] 

films is mainly related to the moisture and IL contents in the films, RH can potentially 

tailor the electrical conductivity of starch-[C2mim][OAc] films.64  

Visual appearance 

Immediately after compression molding and before conditioning, different 

[C2mim][OAc]-plasticized starch-based films were placed on top of a paper sheet printed 

with The University of Queensland (UQ) logos to indicate their optical transparency. All 

starch-[C2mim][OAc] films displayed high transparency, showing the proper 

plasticization of starch by [C2mim][OAc]. IL21-T65 was observed having the highest 

transparency, while IL18-T55 was least transparent. These results were as expected as a 

higher [C2mim][OAc] (lower starch content) and/or a higher processing temperature 

could facilitate interactions between [C2mim][OAc] and starch molecules, i.e., a stronger 

plasticization effect. Abundant plasticization could disrupt the sophisticated granule 

structure of native starch, leading to the higher transparency of the film. 

Surface morphology 

Page 14 of 43

ACS Paragon Plus Environment

ACS Sustainable Chemistry & Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 15

Figure 1 collects the SEM images of the normal and fracture surfaces of starch-

[C2mim][OAc] films under either 33% or 75% RHs. IL18-T55-H33/75 were observed 

still containing the apparent starch granule shapes that were not destroyed during 

processing. With a reduced starch content in the formulation, IL21-T55-H33/75 also 

displayed such granule shapes on its surfaces. It has been reported that even after 

gelatinization in abundant water, there are still some granule shells that are not destroyed. 

These granule shells could be similar to “ghosts”,65 which are formed due to the physical 

crosslinking of polysaccharide chains within swollen granules.66  
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Figure 1. SEM images of normal and fracture surfaces of starch-[C2mim][OAc] films. The spot 

size was 6 nm. The scale bar (yellow) indicates 10 µm. 

 

With a higher processing temperature (IL18-T65-H33/75 and IL21-T65-H33/75), these 

remaining granules became much less apparent, and the surface morphologies became 

more homogeneous and smooth. These results suggested that at a higher temperature, the 

aqueous IL was more effective in the disruption of the native starch structure and the 

disentanglement of starch molecules. Nonetheless, the two starch contents used did not 

result in any significant difference in morphology. 
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Crystalline structure 

Powder X-ray diffraction (pXRD) provides an elucidation of the long-range molecular 

order in the polymer. There are three polymorphic crystalline structures of starch, termed 

A, B or V-type, and the types of crystallinity can be unambiguously distinguished by 

inspecting the characteristic X-ray diffraction patterns.14, 67 This is important as each type 

of the starch crystalline structures interacts differently with water molecules. Normally, in 

the crystalline structure of native starch, A-type and B-type polymorphs are found; both 

are left-handed, six-fold structures. However, the A-type polymorph is arranged as H-

bonded parallel-stranded double helices (one double helix at the corner and another at the 

center of the unit cell) packed in a B2-monoclinic space group;67 such close-packed 

arrangement allows for capture of only four water molecules in the unit cell. Water thus 

cannot be removed from A-type starch without a complete destruction of its crystalline 

structure. The double helices of B-polymorph are packed into a hexagonal unit cell, P61 

space group,67 and thus the arrangement is more open allowing for a presence of larger 

number of water molecules, located in a central channel surrounded by six double helices. 

Here as many as thirty-six water molecules are located in the unit cell between the six 

double helices,68 creating a “column” of water surrounded by the hexagonal network. 

Finally, V-type polymorph is arranged into a single, left-handed helix, where the hydroxyl 

groups of the glucose units all lie nearly in the plane of the ring, resulting in a larger 

hydrophobic central cavity.  

Figure 2 shows the pXRD pattern for the native starch and different starch-

[C2mim][OAc] films. Native RMS showed the typical A-type pattern, with strong 

reflections at 2θ of about 15° and 23° and an unresolved doublet at 2θ of 17° and 18°, 
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with a few weak peaks at 2θ of about 26°, 30°, and 33°.55, 69 For the plasticized samples, 

the doublet at 2θ of 17° and 18° disappeared, suggesting a complete loss of the A-type 

pattern. Besides, the plasticized samples displayed the weak VH-type pattern as shown by 

sharp peaks at 2θ of 7°, 13°, and 20°,59 and the modest B-type pattern as indicated by 

strong reflections at 2θ of 5°, 17°, 22° and 24°.55, 69 The VH-type crystalline structure is 

commonly observed in processed starch, which is caused by the rapid recrystallization of 

single-helical structures of amylose during cooling after processing.59 While the 

plasticized RMS had both (newly-formed) VH-type and B-type crystalline structures, the 

crystallinity was low as indicated by the reduced XRD intensities. In particular, IL21-

T55-H75 and IL21-T65-H75 were predominantly amorphous. Based on these results, the 

combination of high [C2mim][OAc] and moisture contents could make the starch chains 

too mobile to arrange into crystals during the processing and conditioning. 
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Figure 2. pXRD patterns for native starch and starch-[C2mim][OAc] films. 

 

Table 2 lists the XRD parameters for the changes in crystalline structure. The total 

crystallinity (Xc) of the native starch was 38.62%, including 37.53% for the A-type 

crystalline structure and the rest 1.09% for V-type. IL21-T55-H33 had reduced Xc of just 

4.66% (containing 3.99% for B-type and 0.68% for V-type). With a higher processing 

temperature, IL21-T65-H33 had higher total Xc and higher Xc for both the B- and V-type 

crystalline structures. These results suggested a higher temperature could allow stronger 

interactions between starch and [C2mim][OAc], which facilitated the rearrangements of 

starch molecules to form new crystals. However, at 75% RH, these rearrangements might 

be restricted to some degree, as seen from IL21-55-75 and IL21-65-75 with reduced Xc 

values. With both high [C2mim][OAc] and MCs, the interactions of these liquids with 
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starch hydroxyls could dominate, and thus the interactions between starch molecules were 

inhibited.  

 

Table 2. Parameters for crystalline structure of native starch and starch-[C2mim][OAc] films. 

 

Xc (%) measured by XRD a  ATR-FTIR band 

intensity ratio 

Sample Total A-type B-type V-type  R995/1022 

Native starch  38.62 37.53 – 1.09  – 

IL18-T55-H33 6.63 – 6.01 0.61  2.297 ± 0.026 

IL18-T55-H75 6.23 – 5.64 0.59  2.066 ± 0.018 

IL18-T65-H33 7.07 – 6.24 0.83  2.282 ± 0.020 

IL18-T65-H75 6.53 – 5.77 0.76  2.054 ± 0.022 

IL21-T55-H33 4.66 – 3.99 0.68  1.940 ± 0.015 

IL21-T55-H75 4.04 – 3.49 0.55  1.829 ± 0.023 

IL21-T65-H33 5.27 – 4.24 1.03  2.002 ± 0.028 

IL21-T65-H75 4.60 – 3.79 0.81  1.876 ± 0.019 

a XRD values are within ± 1% 

 

ATR-FTIR results can also reflect the change in starch orders. Specifically, the 

absorption band intensity at 1022 cm−1 relates to the amorphous parts, while that at 

995 cm−1 corresponds to the hydrogen bonding and the regularity resulting from 

molecular rearrangements. Therefore, the band intensity between 995 cm−1 and 1022 cm−1 

(R995/1022) can be used to study the recrystallization of starch-based materials.70 Figure 3 

shows the ATR-FTIR spectra for the native starch and starch-[C2mim][OAc] films, with 
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the R995/1022 values shown in Table 2. It can be seen that R995/1022 was increased with 

processing temperature and starch content, suggesting a higher degree of molecular 

rearrangements. A higher RH reduced R995/1022 ratio, which meant a higher MC did not 

favor the molecular rearrangements. All these results were consistent with the XRD 

analysis. 

 

 

Figure 3. FTIR spectra for native starch and starch-[C2mim][OAc] films. 

 

Nano-structural features 

Figure 4 presents the synchrotron-SAXS patterns for the native starch and starch-

[C2mim][OAc] films. As expected, the native starch had a characteristic SAXS peak at 
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ca. 0.06 Å−1, ascribed to its native semicrystalline lamellae.71 IL18-T55-H33 displayed a 

weaker lamellar peak than the native starch, and a new inflection at ca. 0.007 Å−1. This 

inflection could be correlated to the Guinier scattering behavior, i.e., a structure with a 

certain radius of gyration, Rg.
72 Here, this inflection could be attributed to the aggregates 

of starch chains (mainly amorphous) with [C2mim][OAc]-water molecules on the 

nanoscale (Rg: ca. 60 nm) (see Table 3).  

 

 

Figure 4. SAXS patterns for native starch and starch-[C2mim][OAc] films. 

 

Also can be seen in Figure 4 that a lower starch content and/or a higher processing 

temperature reduced the visibility of the lamellar peak. The other two inflections could be 

seen at q values lower than the lamellae peak position (ca. 0.007 Å−1 and 0.04 Å−1). 

Regarding this, the increased [C2mim][OAc] content and processing temperature 
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facilitated the disruption of starch semi-crystalline lamellae, from which the out-phasing 

of starch molecules was enhanced. These starch molecules aggregated into not only the 

aggregates with increased Rg but also new starch aggregates of a smaller size (Rg: ca. 

10 nm). At a higher RH, the inflection at ca. 0.04 Å−1 became more apparent, indicating 

the stronger feature of starch aggregates, presumably due to the increased content of 

amorphous starch (indicated by the XRD results). 

 

Table 3. Nanostructural parameters for native starch and starch-[C2mim][OAc] films. 

Sample q (Å-1) dBragg (nm) Rg (nm) α 

Native starch 0.0629 ± 0.0000 9.99 ± 0.00 – – 

IL18-T55-H33 0.0610 ± 0.0000 10.30 ± 0.00 59.11 ± 1.17 1.97 ± 0.02 

IL18-T55-T75 0.0610 ± 0.0000 10.30 ± 0.00 62.80 ± 1.47 1.96 ± 0.02 

IL18-T65-T33 0.0610 ± 0.0000 10.30 ± 0.00 68.76 ± 2.33 1.75 ± 0.02 

IL18-T65-T75 0.0610 ± 0.0000 10.30 ± 0.00 71.89 ± 3.02 1.69 ± 0.02 

IL21-T55-H33 0.0616 ± 0.0008 10.20 ± 0.14 67.45 ± 1.53 1.86 ± 0.01 

IL21-T55-H75 0.0610 ± 0.0000 10.30 ± 0.00 69.54 ± 2.07 1.77 ± 0.02 

IL21-T65-H33 – – 8.64 ± 0.08 2.60 ± 0.03 

IL21-T65-T75 – – 8.86 ± 0.05 2.78 ± 0.03 

 

For IL21-T65-H33/75, no lamellar peak was observed as that for the native starch. 

Instead, at that q range, a “shoulder” peak appeared at ca. 0.06 Å−1. This shoulder 

indicated a molecular organization (both amorphous and ordered starch) on the 

nanoscale.73 In other words, a concomitant reduction in starch content and an increase in 
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processing temperature prominently enhanced the plasticization of starch by 

[C2mim][OAc] acting as flexible spacers (typically between the amylopectin branching 

points) in starch-based films.74-75 This plasticization effect led to the alignment of 

amorphous starch and crystallites in a certain distribution range on the nanoscale. Again, 

the inflection at ca. 0.007 Å-1 (i.e., the starch aggregates) disappeared, indicating an 

increase in the homogeneity of starch-[C2mim][OAc] films (IL21-T65-H33/75). 

Mechanical properties 

Figure 5 shows the tensile properties of different starch-based films, tensile strength 

(σt), Young’s modulus (E), and elongation at break (εb). All three factors, composition, 

temperature and relative humidity affected the mechanical properties. Generally, a larger 

amount of starch resulted in higher tensile strength of the films, i.e., tensile for IL18 was 

greater than for IL21 films. Contrarily, but expectedly, elongation at break (also known as 

fracture strain) that represents the capability of a material to resist changes of shape 

without crack formation was greater with a higher amount of plasticizer ([C2mim][OAc]-

water). The composition affected Young’s modulus to somewhat greater extent than it did 

for tensile and elongation at break, thus films with greater starch content a great increase 

in Young’s modulus. Relative humidity had a larger effect on tensile strength and 

elongation at break than on Young’s modulus, which was independent of humidity but 

affected by the amount of polymer in films. Both tensile strength and elongation were 

greater at a lower humidity. Finally, the samples processed at a higher temperature had 

greater tensile strength and elongation; again humidity was much stronger dependent on 

composition than on processing and conditioning conditions. 
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Figure 5. Tensile strength (σt), Young’s modulus (E), and elongation at break (εb) of starch-

[C2mim][OAc] films. 

 

A higher processing temperature facilitated plasticization by disrupting the original 

hydrogen bonding in the native starch allowing the formation of new crystals and 

molecular entanglements as indicated by the pXRD and SAXS results. These new 

structures could mechanically reinforce the materials.  
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Except for IL18-T55-H75 (whose crystallinity Xc was determined to be 6.23 %), the 

rest of the films follows the clearly pronounced trend: the higher crystallinity, the higher 

tensile strength. On the other hand, a higher starch content (lower [C2mim][OAc] content) 

contributed to higher σt, and E and lower εb (except for the effect of RH on IL21-T55 and 

IL21-T65). These results were expected considering the plasticization effect of 

plasticizers ([C2mim][OAc] and water). Both [C2mim][OAc] and water could result in a 

partial disruption of hydrogen bonding between starch molecules, forming hydrogen 

bonds with –OH sites of starch. Besides, [C2mim][OAc] and water could effectively 

increase the free volume of starch macromolecules, resulting in reduced strength and 

stiffness. Moreover, the plasticizers prevented macromolecular entanglement, resulting in 

less “connections” between the polymer chains, as demonstrated by higher εb. Regarding 

the opposite trend for IL21-T55-H33/75 and IL21-T65-H33/75 as affected by RH, it was 

proposed when the samples were well saturated by [C2mim][OAc] and/or water, both the 

polymer elasticity and the structural effect of the plasticizers could contribute to lower E. 

Perhaps the strong interactions between [C2mim][OAc] and water 63 might also influence 

E.   

Also, compared with IL/glycerol-plasticized starch films prepared by a high 

temperature (e.g. 160 °C) melt processing,76-78 the starch-[C2mim][OAc] films here 

developed at mild temperatures had lower σt and E, but higher or comparative εb. This 

phenomenon could be mainly attributed to the lower starch content (higher IL-water 

content) in this work, which contributed to the reduced strength and stiffness and the 

weakened “connections” between the starch chains for the starch-IL films as discussed 

above.  
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Thermal stability  

Figure 6 shows the TGA results for the pure IL, the native starch, and different starch-

[C2mim][OAc] films. It can be seen that pure [C2mim][OAc] had a big derivative weight 

loss peak between about 160 °C and 275 °C, showing its thermal decomposition. This 

temperature range of TGA decomposition is exactly in agreement with a previous study 

which documented the lower thermal stability of acetate IL’s than IL’s containing other 

anions like [Cl−].79 Also, starting from about 75 °C, there was a slight weight loss 

immediately before the decomposition, which might be ascribed to the evaporation of 

impurities present in the starting materials (< 5%, mainly acetic acid, methylimidazole, 

and water). 
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(a)        (b) 

 

(c) 

Figure 6. TGA results of the pure IL (a), and different starch-[C2mim][OAc] films (b, weight 

loss; c, derivative weight loss). 

 

For the native starch, there was a weight loss between ca. 40 °C and 140 °C, due to the 

evaporation of moisture in the starch. After that, the thermal decomposition of starch 

occurred between ca. 240 °C and 330 °C, which was in agreement with previous 
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studies.80-81 This main peak could be specifically associated with the breakage of long 

chains of starch as well as the thermal oxidation of the glucose rings.80 

All the processed starch-based films displayed a very similar thermal decomposition 

profile. The main decomposition spanned from 185 °C to 330 °C. As previous studies 

have shown that the thermal decomposition temperature of pure [C2mim][OAc] was from 

ca. 160 °C to 275 °C,78 the peak for [C2mim][OAc] would be overlapped by the thermal 

decomposition peak of the native starch. The main decomposition (the maximum rate of 

weight loss, or derivative peak, at ca. 260 °C) occurred much earlier for the processed 

samples than for the native starch (derivative peak at ca. 290 °C). Thus, all starch-

[C2mim][OAc] films had reduced thermal stability, which was in agreement with the 

previous studies.54, 64, 78 No difference was observed for the different starch-based films, 

irrespective of [C2mim][OAc] or water content and RH. Water/[C2mim][OAc] should 

have already had reached the maximum interactions with the starch. Hence no effect 

could be seen regarding the thermal stability of the films. 

Electrical conductivity 

Electrical conductivity is an important characteristic of [C2mim][OAc]-plasticized 

polymer films. Wang et al. 44 prepared starch-based films plasticized by 30 wt.% 1-allyl-

3-methylimidazolium chloride ([Amim][Cl]), which had an electrical conductivity as high 

as 10−1.6 S/cm at 14.5 wt.% water content. Sankri et al.
52 showed that starch-based films 

plasticized by 30 wt.% 1-butyl-3-methylimidazolium chloride ([C4mim][Cl]) had an 

electrical conductivity of 10−4.6 S/cm at 13 wt.% water content. Sankri et al.
52 proposed 

that the high electrical conductivity obtained by Wang et al.
44 may be explained by 

increased ion mobility due to the ion pair dissociation mechanism described by Zhang et 
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al. 33. This ion pair dissociation might not be apparent for [Amim][Cl] resulting in more 

localized ions in the case of [Amim][Cl]-plasticized starch. Also, as the ion diffusivity 

and mobility mainly control the conductivity, the anion should be small with delocalized 

charge.  

Figure 7 shows the electrical conductivity results for the different samples in this work. 

All the samples had good electrical conductivity (>10−3 S/cm). In particular, IL21-T55-

H33 and IL21-T55-H75 showed the highest electrical conductivity of 0.0055 and 

0.0118 S/cm, respectively. Also, for the samples with the same starch content and 

conditioned at the same RH, a lower processing temperature (55 °C instead of 65 °C) 

could lead to a higher electrical conductivity. In these results, a higher processing 

temperature allowed [C2mim][OAc] and water molecules to strongly interact with the 

starch, which might have reduced the extent of ion pair dissociation.  

From Figure 7, a general trend could be identified that either an increase in RH or 

[C2mim][OAc] content could increase the electrical conductivity, with the effect of RH 

being more significant. Wang, et al. 44 have indicated that increasing ion concentration by 

increasing the IL content could improve the conductance of plasticized starch films 

effectively, and similarly, a high water content can promote a better transference of the 

anions and cations in the films. 
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Figure 7. Electrical conductivity of starch-[C2mim][OAc] films. 

 

CONCLUSION  

In this work, we demonstrate that starch can be processed into optically transparent 

films easily and rapidly by compression molding at mild temperatures (55 °C or 65 °C), 

which are much lower than the temperatures commonly used in the thermal melt 

processing of biopolymer (typically over 150 °C). This process was achieved with the use 

of an ionic liquid, [C2mim][OAc], which was assisted by a high processing pressure 

(8 MPa) to disrupt the sophisticated and resistant granule structure of native starch. 

Moreover, the structure and properties of the resultant films could be tailored by starch 

content, compression molding temperature, and/or RH used for the sample post-

processing conditioning. 

With the pXRD analysis, it was found that the simple processing eliminated the 

original A-type crystalline structure of starch and the processed materials contained newly 
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formed crystals (predominantly B-type and some V-type). These new structures could 

contribute to enhanced mechanical properties (σt, E, and εb). Nonetheless, a higher 

[C2mim][OAc] content, lower processing temperature (55 °C), and/or higher RH (75%) 

during conditioning reduced the crystallinity and even resulted in an amorphous material. 

Also, SAXS revealed that the processing could destroy the original lamellar structure of 

starch, and the plasticized starch tended to form a gel-like structure on the nanoscale in a 

coordinated fashion, which could be favored by increased processing temperature and 

conditioning RH. The starch-[C2mim][OAc] films displayed excellent electrical 

conductivity (>10−3 S/cm), which was higher with a lower processing temperature (55 °C) 

and a higher conditioning RH (75%). With the use of [C2mim][OAc], the thermal stability 

of starch-based films was reduced by 30 °K but was independent of the formulation and 

processing conditions. 

Our findings here could not only benefit the development of advanced biopolymer-

based materials with tailored structure and properties such as electrical conductivity but 

also guide the evolution of material processing techniques for reducing energy 

consumption as well as enhancing processing versatility to incorporate heat-sensitive 

ingredients.  
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With an ionic liquid (1-ethyl-3-methylimidazolium acetate, [C2mim][OAc]), starch was facilely 

processed into optically-transparent electroconductive films at greatly reduced temperature, 

relative to that commonly used in biopolymer melt processing.  
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