21 research outputs found

    Raman spectroscopic analysis of cell differentiation and death modes

    Get PDF
    Raman spectroscopy provides opportunities for non-invasive, non-destructive, label-free analysis of cell states based on changes in the biochemical composition of cells. We are investigating the suitability of Raman spectroscopy to assess the stages of human embryonic stem cell (hESC) differentiation towards pancreatic insulin-positive cells. Raman microspectrometry analysis has revealed macromolecular composition differences over time that distinguished cell populations differentiating to pancreatic cell types, such as by an increase in the protein-to-nucleic acid signal ratio and to distinguish the presence of insulin. Added insight into these macromolecular changes were provided by principal component analysis (PCA) of the data. However, the application of PCA can be difficult to interpret. The usefulness of non-negative matrix factorization was explored to improve the interpretability of overlapping Raman bands. We demonstrated the utility of this procedure by analyzing spectra to determine the cellular insulin or glucagon content. Thus, Raman spectroscopy can detect such differences in cells to detect the desired product as well as the potential to detect residual hESCs or the emergence of unwanted cells. We also investigated the suitability of Raman spectroscopy to detect the onset and types of cell death. Apoptotic, necrotic or autophagic Chinese Hamster Ovary cells were compared to uninduced cultures using Raman spectroscopy and PCA. Furthermore, uninduced cells were compared to cells sorted at different stages of apoptosis to determine how early the onset of apoptosis could be detected. Changes were observed in several peaks during the course of cell death, with repeated changes observed in nucleic acid- and lipid-associated peaks, enabling the distinction of cell death modes. Application of such death monitoring capabilities to cellular therapy cultures should be even more useful, given the need for more process analytical technologies to address the often more variable performance of these cultures, especially when adaptive control is needed for primary cell derived manufacturing

    Acoustic cell washing and raman spectroscopy technologies To address cell therapy bioprocess challenges

    Get PDF
    Many organizations are confronting the challenges of economically ensuring the manufacture of safe and efficacious cell therapy products. These processes often depend on devices and methods that were developed for only related applications, such as blood cell processing or scientific research. Thus, we are in a window of opportunity to tailor innovative technologies to address the emerging specialized needs of cell therapy manufacturing. The most frequent unit operation is to wash cells between process stages, such as from DMSO containing cryopreservation medium to culture expansion medium. In particular for relatively small-scale autologous cell therapy processing, cell washing is imperfectly performed by closed system blood cell centrifuges or filters. We previously developed an acoustic cell separation device, widely used for over 15 years in CHO cell perfusion cultures. This technology acts as a non-fouling filter for months of operation, by using the forces generated in ultrasonic standing wave fields. These forces separate cells from medium based on differences in density and compressibility. Greater than 99.9% cell washing with 95% washed cell recovery efficiencies have been provided by our device. We also have recently enhanced the acoustic technology to perfuse 100 million cell/mL cultures, maintaining \u3e99% cell separation efficiencies. This provides an alternative high performance closed manufacturing system, to perfuse, concentrate and wash cells, with no physical filter barrier or mechanical moving parts. While many clinical trials have had few adverse events, the great promise of cellular therapies comes with grave risks, such as from potentially oncogenic pluripotent cells present in embryonic stem cell derived populations. There is an urgent need for process analytical technologies to non-invasively monitor mammalian cell populations and improve the reliability of manufactured cell products. This includes to monitor both the expected differentiation as well as to detect unexpected cells in the process. Recently, technological advances have led to an explosive growth in the capabilities of Raman spectroscopy, increasing the potential for novel applications. We are developing the use of this spectroscopic technique to track cell development, by measuring macromolecular changes in cell samples from cultures where stem cells are differentiated towards insulin-producing cells for the treatment of diabetes. Raman spectroscopy has great potential to provide continuous on-line assessment of cell quality during the manufacture of cell-derived therapeutic cells
    corecore