526 research outputs found

    Pressure flow effects on scour at bridges

    Get PDF
    Department Head: Marvin E. Criswell.Includes bibliographical references (pages 122-126).Scour caused by the occurrence of pressure flow requires a comprehensive understanding. Pressure flow can be defined as flow in which the low chord of a bridge becomes inundated and the flow through the bridge opening transitions from free surface flow to a pressurized condition, leading to a submerged or partially submerged bridge deck condition. A pressure flow condition often occurs at a bridge during a flood, potentially leading to bridge failure. Scour of bridge foundations (piers and abutments) represents the largest single cause of bridge failure in the United States (ASCE, 1999). Methodical scour research began in 1949 with the research of E.M. Laursen. Unfortunately, the application of scour research to the design of bridges did not occur until several bridges failed due to local scour. Over the years, bridge scour research has focused on the study of free surface flow. During the past decade, research related to pressure flow scour has become increasingly important. A testing program was developed and performed at the Hydraulics Laboratory of Colorado State University to examine pressure flow effects on scour at and around bridges. Flume experiments were conducted incorporating a physical model of a generic bridge with supporting abutments constructed at an approximate scale of 8:1. In an effort to simulate varying magnitudes of a pressure flow condition, the model was constructed in a manner that permitted the bridge deck to be lowered into the flow. By lowering the bridge deck and holding the level of the approach flow constant, multiple levels of deck submergence could be examined. Six vertical bridge positions, three discharges, two abutment widths and two sediment sizes were incorporated into a matrix comprising 69 tests. Data collected included hydraulic parameters and topographic surveys. Analysis of data collected during the study resulted in the formulation of a set of multivariate linear regression equations enabling the user to estimate abutment, local and deck scour depths during a pressure flow condition. Results of a dimensional analysis indicate that the dominant variables in predicting scour depths for a pressure flow condition include; the critical velocity of a given sediment size, the average velocity under the bridge deck, the height of the bridge deck above the initial and final bed surface, the depth of flow upstream of the bridge and the Froude number of the approach flow. Coefficients of determination for the developed equations ranged from 0.82 to 0.95

    Unification of large-scale laboratory rainfall erosion testing

    Get PDF
    2014 Fall.Includes bibliographical references.Water pollution degrades surface waters making them unsafe for drinking, fishing, swimming, and other activities. The movement of sediment and pollutants carried by sediment over land surfaces and into water bodies is of increasing concern with regards to clean waters, pollution control, and environmental protection. Due to increasing environmental concerns about sediment in water bodies derived from construction sites, along with increasingly stringent United States Environmental Protection Agency (USEPA) regulations, it is imperative to be able to have a uniform means to compute soil loss determined at large-scale laboratory rainfall-induced erosion facilities that can eventually be applied to construction sites. This dissertation utilized bare-soil data from the most commonly-utilized large-scale rainfall testing laboratories in the erosion-control industry to develop a unifying prediction equation that can be utilized to provide a proper foundation for determining design parameters to meet USEPA stabilization requirements. The developed equation was determined to be a function of the following key parameters: rainfall intensity, plot area, duration, slope gradient, median raindrop size, raindrop kinetic energy, percentage of clay in the soil, and compacted soil percentage. The developed equation for the prediction of rainfall-induced soil loss, developed from sixty-eight data points collected for this study, had a coefficient of determination (R2) of 0.88. The prediction equation unifies large-scale laboratory rainfall erosion testing and provides a means to determine the appropriate design parameters for USEPA stabilization requirements

    Combining School and Family-Centered Interventions to Prevent Child Behavior Problems

    Get PDF
    This poster was presented at the American Psychological Association Conference in Boston, MA, in August 2008.Although school-wide PBS has been shown to reduce problem behaviors among students, approximately 15-20% of students are still in need of more selective interventions due to disruptive behavior problems. Given that both school (see Reinke & Herman, 2002) and family factors (Banks, et al., 1993) contribute to behavior problems in children, combining interventions that target both the school environment and family context is expected to further improve outcomes for those students. An ecological model combining PBS and the Family Check-up is proposed to prevent and reduce behavior problems in children

    Molecular Tracers of the Central 12 pc of the Galactic Center

    Full text link
    We have used the BIMA array to image the Galactic Center with a 19-pointing mosaic in HCN(1-0), HCO+(1-0), and H 42-alpha emission with 5 km/s velocity resolution and 13'' x 4'' angular resolution. The 5' field includes the circumnuclear ring (CND) and parts of the 20 and 50 km/s clouds. HCN(1-0) and HCO+ trace the CND and nearby giant molecular clouds while the H 42-alpha emission traces the ionized gas in Sgr A West. We find that the CND has a definite outer edge in HCN and HCO+ emission at ~45'' radius and appears to be composed of two or three distinct streams of molecular gas rotating around the nucleus. Outside the CND, HCN and HCO+ trace dense clumps of high-velocity gas in addition to optically thick emission from the 20 and 50 km/s clouds. A molecular ridge of compressed gas and dust, traced in NH3 emission and self-absorbed HCN and HCO+, wraps around the eastern edge of Sgr A East. Just inside this ridge are several arcs of gas which have been accelerated by the impact of Sgr A East with the 50 km/s cloud. HCN and HCO+ emission trace the extension of the northern arm of Sgr A West which appears to be an independent stream of neutral and ionized gas and dust originating outside the CND. Broad line widths and OH maser emission mark the intersection of the northern arm and the CND. Comparison to previous NH3 and 1.2mm dust observations shows that HCN and HCO+ preferentially trace the CND and are weaker tracers of the GMCs than NH3 and dust. We discuss possible scenarios for the emission mechanisms and environment at the Galactic center which could explain the differences in these images.Comment: 24 pages, including 17 figures; to appear in The Astrophysical Journa

    Energy-efficient polymeric gas separation membranes for a sustainable future: A review

    Get PDF
    AbstractOver the past three decades, polymeric gas separation membranes have become widely used for a variety of industrial gas separations applications. This review presents the fundamental scientific principles underpinning the operation of polymers for gas separations, including the solution-diffusion model and various structure/property relations, describes membrane fabrication technology, describes polymers believed to be used commercially for gas separations, and discusses some challenges associated with membrane materials development. A description of new classes of polymers being considered for gas separations, largely to overcome existing challenges or access applications that are not yet practiced commercially, is also provided. Some classes of polymers discussed in this review that have been the focus of much recent work include thermally rearranged (TR) polymers, polymers of intrinsic microporosity (PIMs), room-temperature ionic liquids (RTILs), perfluoropolymers, and high-performance polyimides

    The Nature of the Molecular Environment within 5 pc of the Galactic Center

    Full text link
    We present a detailed study of molecular gas in the central 10pc of the Galaxy through spectral line observations of four rotation inversion transitions of NH3 made with the VLA. Updated line widths and NH3(1,1) opacities are presented, and temperatures, column densities, and masses are derived. We examine the impact of Sgr A East on molecular material at the Galactic center and find that there is no evidence that the expansion of this shell has moved a significant amount of the 50 km/s GMC. The western streamer, however, shows strong indications that it is composed of material swept-up by the expansion of Sgr A East. Using the mass and kinematics of the western streamer, we calculate an energy of E=(2-9)x10^{51} ergs for the progenitor explosion and conclude that Sgr A East was most likely produced by a single supernova. The temperature structure of molecular gas in the central ~20pc is also analyzed in detail. We find that molecular gas has a ``two-temperature'' structure similar to that measured by Huttemeister et al. (2003a) on larger scales. The largest observed line ratios, however, cannot be understood in terms of a two-temperature model, and most likely result from absorption of NH3(3,3) emission by cool surface layers of clouds. By comparing the observed NH3 (6,6)-to-(3,3) line ratios, we disentangle three distinct molecular features within a projected distance of 2pc from Sgr A*. Gas associated with the highest line ratios shows kinematic signatures of both rotation and expansion. The southern streamer shows no significant velocity gradients and does not appear to be directly associated with either the circumnuclear disk or the nucleus. The paper concludes with a discussion of the line-of-sight arrangement of the main features in the central 10pc.Comment: 51 pages, 16 figures, accepted for publication in ApJ. Due to size limitations, some of the images have been cut from this version. A complete, color PS or PDF version can be downloaded from http://www.astro.columbia.edu/~herrnstein/NH3/paper

    Assessing the utility of metabarcoding for diet analyses of the omnivorous wild pig (\u3ci\u3eSus scrofa\u3c/i\u3e)

    Get PDF
    Wild pigs (Sus scrofa) are an invasive species descended from both domestic swine and Eurasian wild boar that was introduced to North America during the early 1500s. Wild pigs have since become the most abundant free-ranging exotic ungulate in the United States. Large and ever-increasing populations of wild pigs negatively impact agriculture, sport hunting, and native ecosystems with costs estimated to exceed $1.5 billion/ year within the United States. Wild pigs are recognized as generalist feeders, able to exploit a broad array of locally available food resources, yet their feeding behaviors remain poorly understood as partially digested material is often unidentifiable through traditional stomach content analyses. To overcome the limitation of stomach content analyses, we developed a DNA sequencing-based protocol to describe the plant and animal diet composition of wild pigs. Additionally, we developed and evaluated blocking primers to reduce the amplification and sequencing of host DNA, thus providing greater returns of sequences from diet items. We demonstrate that the use of blocking primers produces significantly more sequencing reads per sample from diet items, which increases the robustness of ascertaining animal diet composition with molecular tools. Further, we show that the overall plant and animal diet composition is significantly different between the three areas sampled, demonstrating this approach is suitable for describing differences in diet composition among the locations
    corecore