7,608 research outputs found

    Fast tuneable InGaAsP DBR laser using quantum-confined stark-effect-induced refractive index change

    Get PDF
    We report a monolithically integrated InGaAsP DBR ridge waveguide laser that uses the quantum-confined Stark effect (QCSE) to achieve fast tuning response. The laser incorporates three sections: a forward-biased gain section, a reverse-biased phase section, and a reverse-biased DBR tuning section. The laser behavior is modeled using transmission matrix equations and tuning over similar to 8 nm is predicted. Devices were fabricated using post-growth shallow ion implantation to reduce the loss in the phase and DBR sections by quantum well intermixing. The lasing wavelength was measured while varying the reverse bias of the phase and DBR sections in the range 0 V to < - 2.5 V. Timing was noncontinuous over a similar to 7-nm-wavelength range, with a side-mode suppression ratio of similar to 20 dB. Coupled cavity effects due to the fabrication method used introduced discontinuities in tuning. The frequency modulation (FM) response was measured to be uniform within 2 dB over the frequency range 10 MHz to 10 GHz, indicating that tuning times of 100 ps are possible

    Consent for the use of human biological samples for biomedical research: a mixed methods study exploring the UK public’s preferences

    Get PDF
    OBJECTIVE: A mixed-methods study exploring the UK general public's views towards consent for the use of biosamples for biomedical research.&lt;p&gt;&lt;/p&gt; SETTING: Cross-sectional population-based focus groups followed by an online survey.&lt;p&gt;&lt;/p&gt; PARTICIPANTS: 12 focus groups (81 participants) selectively sampled to reflect a range of demographic groups; 1110 survey responders recruited through a stratified sampling method with quotas set on sex, age, geographical location, socioeconomic group and ethnicity.&lt;p&gt;&lt;/p&gt; MAIN OUTCOME MEASURES: (1) Views on the importance of consent when donating residual biosamples for medical research; (2) preferences for opt-in or opt-out consent approaches and (3) preferences for different consent models.&lt;p&gt;&lt;/p&gt; RESULTS: Participants believed obtaining consent for use of residual biosamples was important as it was 'morally correct' to ask, and enabled people to make an active choice and retain control over their biosamples. Survey responders preferred opt-in consent (55%); the strongest predictor was being from a low socioeconomic group (OR 2.22, 95% CI 1.41 to 3.57, p=0.001) and having a religious affiliation (OR 1.36, 95% CI 1.01 to 1.81, p=0.04). Focus group participants had a slight preference for opt-out consent because by using this approach more biosamples would be available and facilitate research. Concerning preferred models of consent for research use of biosamples, survey responders preferred specific consent with recontact for each study for which their biosamples are eligible. Focus group participants preferred generic consent as it provided 'flexibility for researchers' and reduced the likelihood that biosamples would be wasted. The strongest predictor for preferring specific consent was preferring opt-in consent (OR 4.58, 95% CI 3.30 to 6.35, p=0.015) followed by non-'White' ethnicity (OR 2.94, 95% CI 1.23 to 7.14, p&#60;0.001).&lt;p&gt;&lt;/p&gt; CONCLUSIONS: There is a preference among the UK public for ongoing choice and control over donated biosamples; however, increased knowledge and opportunity for discussion is associated with acceptance of less restrictive consent models for some people.&lt;p&gt;&lt;/p&gt

    Wildlife disease ecology from the individual to the population: Insights from a long-term study of a naturally infected European badger population

    Get PDF
    This is the final version of the article. Available from Wiley via the DOI in this record.Long-term individual-based datasets on host-pathogen systems are a rare and valuable resource for understanding the infectious disease dynamics in wildlife. A study of European badgers (Meles meles) naturally infected with bovine tuberculosis (bTB) at Woodchester Park in Gloucestershire (UK) has produced a unique dataset, facilitating investigation of a diverse range of epidemiological and ecological questions with implications for disease management. Since the 1970s, this badger population has been monitored with a systematic mark-recapture regime yielding a dataset of >15,000 captures of >3,000 individuals, providing detailed individual life-history, morphometric, genetic, reproductive and disease data. The annual prevalence of bTB in the Woodchester Park badger population exhibits no straightforward relationship with population density, and both the incidence and prevalence of Mycobacterium bovis show marked variation in space. The study has revealed phenotypic traits that are critical for understanding the social structure of badger populations along with mechanisms vital for understanding disease spread at different spatial resolutions. Woodchester-based studies have provided key insights into how host ecology can influence infection at different spatial and temporal scales. Specifically, it has revealed heterogeneity in epidemiological parameters; intrinsic and extrinsic factors affecting population dynamics; provided insights into senescence and individual life histories; and revealed consistent individual variation in foraging patterns, refuge use and social interactions. An improved understanding of ecological and epidemiological processes is imperative for effective disease management. Woodchester Park research has provided information of direct relevance to bTB management, and a better appreciation of the role of individual heterogeneity in disease transmission can contribute further in this regard. The Woodchester Park study system now offers a rare opportunity to seek a dynamic understanding of how individual-, group- and population-level processes interact. The wealth of existing data makes it possible to take a more integrative approach to examining how the consequences of individual heterogeneity scale to determine population-level pathogen dynamics and help advance our understanding of the ecological drivers of host-pathogen systems.The study is supported by the UK Department of Environment, Food and Rural Affairs. M.J.S. was supported by NE/M004546/1. J.L.M. research was motivated by NE/M010260/1 and currently supported by NE/L007770/1

    Orthonectids Are Highly Degenerate Annelid Worms

    Get PDF
    The animal groups of Orthonectida and Dicyemida are tiny, extremely simple, vermiform endoparasites of various marine animals and have been linked in the Mesozoa (Figure 1). The Orthonectida (Figures 1A and 1B) have a few hundred cells, including a nervous system of just ten cells, and the Dicyemida (Figure 1C) are even simpler, with ∼40 cells. They are classic “Problematica”—the name Mesozoa suggests an evolutionary position intermediate between Protozoa and Metazoa (animals) and implies that their simplicity is a primitive state, but molecular data have shown they are members of Lophotrochozoa within Bilateria, which means that they derive from a more complex ancestor. Their precise affinities remain uncertain, however, and it is disputed whether they even constitute a clade. Ascertaining their affinities is complicated by the very fast evolution observed in their genes, potentially leading to the common systematic error of long-branch attraction (LBA). Here, we use mitochondrial and nuclear gene sequence data and show that both dicyemids and orthonectids are members of the Lophotrochozoa. Carefully addressing the effects of unequal rates of evolution, we show that the Mesozoa is polyphyletic. While the precise position of dicyemids remains unresolved within Lophotrochozoa, we identify orthonectids as members of the phylum Annelida. This result reveals one of the most extreme cases of body-plan simplification in the animal kingdom; our finding makes sense of an annelid-like cuticle in orthonectids and suggests that the circular muscle cells repeated along their body may be segmental in origin

    Adoption of Integrated Pest Management Practices by South Carolina Cotton Growers

    Get PDF
    The project reported here assessed the level of adoption of integrated pest management (IPM) by South Carolina cotton growers. A mail survey of growers was used to provide data on specific IPM practices utilized. Growers were categorized as low, medium, or high IPM adopters based on the frequency with which they implemented specific practices. The majority of growers fell into the medium or high IPM rankings. However, only 7% of respondents attained a high IPM ranking in the Cultural Pest Management section. This suggests that future cotton IPM Extension efforts should be directed towards increasing grower adoption of cultural IPM practices

    Longitudinal measurement of the developing grey matter in preterm subjects using multi-modal MRI.

    Get PDF
    Preterm birth is a major public health concern, with the severity and occurrence of adverse outcome increasing with earlier delivery. Being born preterm disrupts a time of rapid brain development: in addition to volumetric growth, the cortex folds, myelination is occurring and there are changes on the cellular level. These neurological events have been imaged non-invasively using diffusion-weighted (DW) MRI. In this population, there has been a focus on examining diffusion in the white matter, but the grey matter is also critically important for neurological health. We acquired multi-shell high-resolution diffusion data on 12 infants born at ≤28weeks of gestational age at two time-points: once when stable after birth, and again at term-equivalent age. We used the Neurite Orientation Dispersion and Density Imaging model (NODDI) (Zhang et al., 2012) to analyse the changes in the cerebral cortex and the thalamus, both grey matter regions. We showed region-dependent changes in NODDI parameters over the preterm period, highlighting underlying changes specific to the microstructure. This work is the first time that NODDI parameters have been evaluated in both the cortical and the thalamic grey matter as a function of age in preterm infants, offering a unique insight into neuro-development in this at-risk population

    The mitochondrial genomes of the acoelomorph worms Paratomella rubra, Isodiametra pulchra and Archaphanostoma ylvae

    Get PDF
    Acoels are small, ubiquitous - but understudied - marine worms with a very simple body plan. Their internal phylogeny is still not fully resolved, and the position of their proposed phylum Xenacoelomorpha remains debated. Here we describe mitochondrial genome sequences from the acoels Paratomella rubra and Isodiametra pulchra, and the complete mitochondrial genome of the acoel Archaphanostoma ylvae. The P. rubra and A. ylvae sequences are typical for metazoans in size and gene content. The larger I. pulchra  mitochondrial genome contains both ribosomal genes, 21 tRNAs, but only 11 protein-coding genes. We find evidence suggesting a duplicated sequence in the I. pulchra mitochondrial genome. The P. rubra, I. pulchra and A. ylvae mitochondria have a unique genome organisation in comparison to other metazoan mitochondrial genomes. We found a large degree of protein-coding gene and tRNA overlap with little non-coding sequence in the compact P. rubra genome. Conversely, the A. ylvae and I. pulchra genomes have many long non-coding sequences between genes, likely driving genome size expansion in the latter. Phylogenetic trees inferred from mitochondrial genes retrieve Xenacoelomorpha as an early branching taxon in the deuterostomes. Sequence divergence analysis between P. rubra sampled in England and Spain indicates cryptic diversity

    Imaging interactions between the immune and cardiovascular systems in vivo by multiphoton microscopy

    Get PDF
    Several recent studies in immunology have used multiphoton laser-scanning microscopy to visualise the induction of an immune response in real time in vivo. These experiments are illuminating the cellular and molecular interactions involved in the induction, maintenance and regulation of immune responses. Similar approaches are being applied in cardiovascular research where there is an increasing body of evidence to support a significant role for the adaptive immune system in vascular disease. As such, we have begun to dissect the role of T lymphocytes in atherosclerosis in real time in vivo. Here, we provide step-by-step guides to the various stages involved in visualising the migration of T cells within a lymph node and their infiltration into inflamed tissues such as atherosclerotic arteries. These methods provide an insight into the mechanisms involved in the activation and function of immune cells in vivo

    Near-Field Analysis of Terahertz Pulse Generation From Photo-Excited Charge Density Gradients

    Get PDF
    Excitation of photo-current transients at semiconductor surfaces by subpicosecond optical pulses gives rise to emission of electromagnetic pulses of terahertz (THz) frequency radiation. To correlate the THz emission with the photo-excited charge density distribution and the photo-current direction, we mapped near-field and far-field distributions of the generated THz waves from GaAs and Fe-doped InGaAs surfaces. The experimental results show that the charge dynamics in the plane of the surface can radiate substantially stronger THz pulses than the charge dynamics in the direction normal to the surface, which is generally regarded as the dominant origin of the emission
    corecore