1,156 research outputs found

    Toll-like receptor-4 null mutation causes fetal loss and fetal growth restriction associated with impaired maternal immune tolerance in mice.

    Get PDF
    Maternal immune adaptation to accommodate pregnancy depends on sufficient availability of regulatory T (Treg) cells to enable embryo implantation. Toll-like receptor 4 is implicated as a key upstream driver of a controlled inflammatory response, elicited by signals in male partner seminal fluid, to initiate expansion of the maternal Treg cell pool after mating. Here, we report that mice with null mutation in Tlr4 (Tlr4-/-) exhibit impaired reproductive outcomes after allogeneic mating, with reduced pregnancy rate, elevated mid-gestation fetal loss, and fetal growth restriction, compared to Tlr4+/+ wild-type controls. To investigate the effects of TLR4 deficiency on early events of maternal immune adaptation, TLR4-regulated cytokines and immune regulatory microRNAs were measured in the uterus at 8 h post-mating by qPCR, and Treg cells in uterus-draining lymph nodes were evaluated by flow cytometry on day 3.5 post-coitum. Ptgs2 encoding prostaglandin-endoperoxide synthase 2, cytokines Csf2, Il6, Lif, and Tnf, chemokines Ccl2, Cxcl1, Cxcl2, and Cxcl10, and microRNAs miR-155, miR-146a, and miR-223 were induced by mating in wild-type mice, but not, or to a lesser extent, in Tlr4-/- mice. CD4âș T cells were expanded after mating in Tlr4+/+ but not Tlr4-/- mice, with failure to expand peripheral CD25âșFOXP3âș NRP1⁻ or thymic CD25âșFOXP3âș NRP1âș Treg cell populations, and fewer Treg cells expressed Ki67 proliferation marker and suppressive function marker CTLA4. We conclude that TLR4 is an essential mediator of the inflammation-like response in the pre-implantation uterus that induces generation of Treg cells to support robust pregnancy tolerance and ensure optimal fetal growth and survival.Hon Y. Chan, Lachlan M. Moldenhauer, Holly M. Groome, John E. Schjenken, Sarah A. Robertso

    Women’s mental health during pregnancy: A participatory qualitative study

    Get PDF
    Background/objectives: British public health and academic policy and guidance promotes service user involvement in health care and research, however collaborative research remains underrepresented in literature relating to pregnant women’s mental health. The aim of this participatory research was to explore mothers’ and professionals’ perspectives on the factors that influence pregnant women’s mental health. Method: This qualitative research was undertaken in England with the involvement of three community members who had firsthand experience of mental health problems during pregnancy. All members of the team were involved in study design, recruitment, data generation and different stages of thematic analysis. Data were transcribed for individual and group discussions with 17 women who self-identified as experiencing mental health problems during pregnancy and 15 professionals who work with this group. Means of establishing trustworthiness included triangulation, researcher reflexivity, peer debriefing and comprehensive data analysis. Findings: Significant areas of commonality were identified between mothers’ and professionals’ perspectives on factors that undermine women’s mental health during pregnancy and what is needed to support women’s mental health. Analysis of data is provided with particular reference to contexts of relational, systemic and ecological conditions in women’s lives. Conclusions: Women’s mental health is predominantly undermined or supported by relational, experiential and material factors. The local context of socio-economic deprivation is a significant influence on women’s mental health and service requirements

    Sperm modulate uterine immune parameters relevant to embryo implantation and reproductive success in mice

    Get PDF
    Seminal fluid factors modulate the female immune response at conception to facilitate embryo implantation and reproductive success. Whether sperm affect this response has not been clear. We evaluated global gene expression by microarray in the mouse uterus after mating with intact or vasectomized males. Intact males induced greater changes in gene transcription, prominently affecting pro-inflammatory cytokine and immune regulatory genes, with TLR4 signaling identified as a top-ranked upstream driver. Recruitment of neutrophils and expansion of peripheral regulatory T cells were elevated by seminal fluid of intact males. In vitro, epididymal sperm induced IL6, CXCL2, and CSF3 in uterine epithelial cells of wild-type, but not Tlr4 null females. Collectively these experiments show that sperm assist in promoting female immune tolerance by eliciting uterine cytokine expression through TLR4-dependent signaling. The findings indicate a biological role for sperm beyond oocyte fertilization, in modulating immune mechanisms involved in female control of reproductive investment.John E. Schjenken, David J. Sharkey, Ella S. Green, Hon Yeung Chan, Ricky A. Matias, Lachlan M. Moldenhauer and Sarah A. Robertso

    Review: Evidence of Neurological Sequelae in Children With Acquired Zika Virus Infection

    Get PDF
    Limited information is available on health outcomes related to Zika virus infection acquired during childhood. Zika virus can cause severe central nervous system malformations in congenitally exposed fetuses and neonates. In vitro studies show the capacity of Zika virus to infect neural progenitor cells, induce central and peripheral neuronal cell deaths, and target different brain cells over the course of brain development. Studies of postnatally infected mice and nonhuman primates have detected degradation of neural cells and morphologic brain cell changes consistent with a broad neuroinflammatory response. In addition, case reports of central nervous system disease in adults and in adolescents secondary to Zika virus infection suggest that Zika virus may have a broader impact on neurological health beyond that observed in congenitally exposed newborns. Long-term neurological complications have been observed with other acquired flaviviral infections, with clinical symptoms manifesting for years after primary infection. The extent to which postnatal Zika virus infection in humans negatively affects the central and peripheral nervous systems and causes long-term neurological damage or cognitive effects is currently unknown. To better understand the potential for neurological sequelae associated with acquired Zika virus infection in children, we reviewed the biological, clinical, and epidemiologic literature and summarized the evidence for this link. First, we review biological mechanisms for neurological manifestations of Zika virus infection in experimental studies. Second, we review observational studies of congenital Zika virus infection and case studies and surveillance reports of neurological sequelae of Zika virus infection in adults and in children. Lastly, we discuss the challenges of conducting Zika virus-neurological sequela studies and future directions for pediatric Zika virus research

    Effects of sea temperature and stratification changes on seabird breeding success

    Get PDF
    As apex predators in marine ecosystems, seabirds may primarily experience climate change impacts indirectly, via changes to their food webs. Observed seabird population declines have been linked to climate-driven oceanographic and food web changes. However, relationships have often been derived from relatively few colonies and consider only sea surface temperature (SST), so important drivers, and spatial variation in drivers, could remain undetected. Further, explicit climate change projections have rarely been made, so longer-term risks remain unclear. Here, we use tracking data to estimate foraging areas for eleven black-legged kittiwake (Rissa tridactyla) colonies in the UK and Ireland, thus reducing reliance on single colonies and allowing calculation of colony-specific oceanographic conditions. We use mixed models to consider how SST, the potential energy anomaly (indicating density stratification strength) and the timing of seasonal stratification influence kittiwake productivity. Across all colonies, higher breeding success was associated with weaker stratification before breeding and lower SSTs during the breeding season. Eight colonies with sufficient data were modelled individually: higher productivity was associated with later stratification at three colonies, weaker stratification at two, and lower SSTs at one, whilst two colonies showed no significant relationships. Hence, key drivers of productivity varied among colonies. Climate change projections, made using fitted models, indicated that breeding success could decline by 21 – 43% between 1961-90 and 2070-99. Climate change therefore poses a longer-term threat to kittiwakes, but as this will be mediated via availability of key prey species, other marine apex predators could also face similar threats

    Targeting Toll-like receptor-4 to tackle preterm birth and fetal inflammatory injury

    Get PDF
    Every year, 15 million pregnancies end prematurely, resulting in more than 1 million infant deaths and long-term health consequences for many children. The physiological processes of labour and birth involve essential roles for immune cells and pro-inflammatory cytokines in gestational tissues. There is compelling evidence that the mechanisms underlying spontaneous preterm birth are initiated when a premature and excessive inflammatory response is triggered by infection or other causes. Exposure to pro-inflammatory mediators is emerging as a major factor in the 'fetal inflammatory response syndrome' that often accompanies preterm birth, where unscheduled effects in fetal tissues interfere with normal development and predispose to neonatal morbidity. Toll-like receptors (TLRs) are critical upstream gatekeepers of inflammatory activation. TLR4 is prominently involved through its ability to sense and integrate signals from a range of microbial and endogenous triggers to provoke and perpetuate inflammation. Preclinical studies have identified TLR4 as an attractive pharmacological target to promote uterine quiescence and protect the fetus from inflammatory injury. Novel small-molecule inhibitors of TLR4 signalling, specifically the non-opioid receptor antagonists (+)-naloxone and (+)-naltrexone, are proving highly effective in animal models for preventing preterm birth induced by bacterial mimetic LPS, heat-killed Escherichia coli, or the TLR4-dependent pro-inflammatory lipid, platelet-activating factor (PAF). Here, we summarise the rationale for targeting TLR4 as a master regulator of inflammation in fetal and gestational tissues, and the potential utility of TLR4 antagonists as candidates for preventative and therapeutic application in preterm delivery and fetal inflammatory injury.Sarah A Robertson, Mark R Hutchinson, Kenner C Rice, Peck-Yin Chin, Lachlan M Moldenhauer, Michael J Stark, David M Olson, Jeffrey A Keela

    Effect of Intralipid infusion on peripheral blood T cells and plasma cytokines in women undergoing assisted reproduction treatment

    Get PDF
    Objectives: Intravenous infusion of Intralipid is an adjunct therapy in assisted reproduction treatment (ART) when immune-associated infertility is suspected. Here, we evaluated the effect of Intralipid infusion on regulatory T cells (Treg cells), effector T cells and plasma cytokines in peripheral blood of women undertaking IVF. Methods: This prospective, observational pilot study assessed Intralipid infusion in 14 women exhibiting recurrent implantation failure, a clinical sign of immune-associated infertility. Peripheral blood was collected immediately prior to and 7 days after intravenous administration of Intralipid. Plasma cytokines were measured by Luminex, and T-cell subsets were analysed by flow cytometry. Results: A small increase in conventional CD8+ T cells occurred after Intralipid infusion, but no change was seen in CD4+ Treg cells, or naïve, memory or effector memory T cells. Proliferation marker Ki67, transcription factors Tbet and RORγt, and markers of suppressive capacity CTLA4 and HLA-DR were unchanged. Dimensionality-reduction analysis using the tSNE algorithm confirmed no phenotype shift within Treg cells or other T cells. Intralipid infusion increased plasma CCL2, CCL3, CXCL8, GM-CSF, G-CSF, IL-6, IL-21, TNF and VEGF. Conclusion: Intralipid infusion elicited elevated pro-inflammatory cytokines, and a minor increase in CD8+ T cells, but no change in pro-tolerogenic Treg cells. Notwithstanding the limitation of no placebo control, the results do not support Intralipid as a candidate intervention to attenuate the Treg cell response in women undergoing ART. Future placebo-controlled studies are needed to confirm the potential efficacy and clinical significance of Intralipid in attenuating cytokine induction and circulating CD8+ T cells.Kerrie L Foyle, David J Sharkey, Lachlan M Moldenhauer, Ella S Green, Jasmine J Wilson, Cassandra J Roccisano ... et al

    Regulatory T cells are paramount effectors in progesterone regulation of embryo implantation and fetal growth

    Get PDF
    Published: June 8, 2023Progesterone (P4) is essential for embryo implantation, but the extent to which the pro-gestational effects of P4 depend on the maternal immune compartment is unknown. Here, we investigate whether regulatory T cells (Treg cells) act to mediate luteal phase P4 effects on uterine receptivity in mice. P4 antagonist RU486 administered to mice on days 0.5 and 2.5 post coitum (dpc) to model luteal phase P4 deficiency caused fewer CD4+Foxp3+ Treg cells and impaired Treg functional competence, along with dysfunctional uterine vascular remodeling and perturbed placental development in mid-gestation. These effects were linked with fetal loss and fetal growth restriction, accompanied by a Th1/CD8-skewed T cell profile. Adoptive transfer at implantation of Treg cells - but not T conventional (Tconv) cells - alleviated fetal loss and fetal growth restriction by mitigating adverse effects of reduced P4 signaling on uterine blood vessel remodeling and placental structure, and restoring maternal T cell imbalance. These findings demonstrate an essential role for Treg cells in mediating P4 effects at implantation, and indicate that Treg cells are a sensitive and critical effector mechanism through which P4 drives uterine receptivity to support robust placental development and fetal growth.Ella S. Green, Lachlan M. Moldenhauer, Holly M. Groome, David J. Sharkey, Peck Y. Chin, Alison S. Care, Rebecca L. Robker, Shaun R. McColl, and Sarah A., Robertso

    Regulatory T cell proportion and phenotype are altered in women using oral contraception

    Get PDF
    Advance access publication 04 July 2022Regulatory T (Treg) cells are a specialized CD4+ T cell subpopulation that are essential for immune homeostasis, immune tolerance, and protection against autoimmunity. There is evidence that sex-steroid hormones estrogen and progesterone modulate Treg cell abundance and phenotype in women. Since natural oscillations in these hormones are modified by hormonal contraceptives, we examined whether oral contraception (OC) use impacts Treg cells and related T cell populations. T cells were analyzed by multiparameter flow cytometry in peripheral blood collected across the menstrual cycle from healthy women either using OC or without hormonal contraception and from age-matched men. Compared to naturally cycling women, women using OC had fewer Treg cells and an altered Treg cell phenotype. Notably, Treg cells exhibiting a strongly suppressive phenotype, defined by high FOXP3, CD25, Helios, HLADR, CTLA4, and Ki67, comprised a lower proportion of total Treg cells, particularly in the early- and mid-cycle phases. The changes were moderate compared to more substantial differences in Treg cells between women and men, wherein women had fewer Treg cells—especially of the effector memory Treg cell subset—associated with more T helper type 1 (Th1) cells and CD8+ T cells and lower Treg:Th1 cell and Treg:CD8+ T cell ratios than men. These findings imply that OC can modulate the number and phenotype of peripheral blood Treg cells and raise the possibility that Treg cells contribute to the physiological changes and altered disease susceptibility linked with OC use.Lachlan M. Moldenhauer, Min Jin, Jasmine J. Wilson, Ella S. Green, David J. Sharkey, Mark D. Salkeld, Thomas C. Bristow, M. Louise Hull, Gustaaf A. Dekker, and Sarah A. Robertso
    • 

    corecore