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Abstract

Every year, 15 million pregnancies end prematurely, resulting in
more than 1 million infant deaths and long-term health
consequences for many children. The physiological processes of
labour and birth involve essential roles for immune cells and pro-
inflammatory cytokines in gestational tissues. There is compelling
evidence that the mechanisms underlying spontaneous preterm
birth are initiated when a premature and excessive inflammatory
response is triggered by infection or other causes. Exposure to
pro-inflammatory mediators is emerging as a major factor in the
‘fetal inflammatory response syndrome’ that often accompanies
preterm birth, where unscheduled effects in fetal tissues interfere
with normal development and predispose to neonatal morbidity.
Toll-like receptors (TLRs) are critical upstream gatekeepers of
inflammatory activation. TLR4 is prominently involved through its
ability to sense and integrate signals from a range of microbial
and endogenous triggers to provoke and perpetuate
inflammation. Preclinical studies have identified TLR4 as an
attractive pharmacological target to promote uterine quiescence
and protect the fetus from inflammatory injury. Novel small-
molecule inhibitors of TLR4 signalling, specifically the non-opioid
receptor antagonists (+)-naloxone and (+)-naltrexone, are proving
highly effective in animal models for preventing preterm birth
induced by bacterial mimetic LPS, heat-killed Escherichia coli, or
the TLR4-dependent pro-inflammatory lipid, platelet-activating
factor (PAF). Here, we summarise the rationale for targeting TLR4
as a master regulator of inflammation in fetal and gestational
tissues, and the potential utility of TLR4 antagonists as candidates
for preventative and therapeutic application in preterm delivery
and fetal inflammatory injury.
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INTRODUCTION

New therapeutic options to tackle spontaneous
preterm birth and mitigate its adverse impact in
infants born prematurely are urgently needed.1,2

Innate immune activation leading to
inflammation in gestational tissues is a central,
early and rate-limiting mechanism driving preterm
birth.3,4 Upstream events in the inflammatory
mechanisms that elicit fetal and placental stress
and precede active labour are attractive targets
for intervention.5–7 To progress pharmacological
solutions, the complex signals involved in
initiating parturition, and the mechanisms by
which different triggers converge onto a common
inflammatory cascade, must be defined.4

Infection is a common cause of preterm birth,
but sterile factors and insults, such as exposure to
oxidative stress and toxins, immune or endocrine
imbalance, multiple births, and placental hypoxia
and haemorrhage, are also risk factors.4,8 For both
microbial and sterile causes, inflammatory
activation occurs early in the pathophysiological
pathway.3,9,10 Pro-inflammatory cytokines and
effector molecules are produced in the fetal
membranes, myometrium and cervix well before
uterine contractions, membrane rupture and
cervical dilatation occur.9–11 These tissue changes
are accompanied by extensive accumulation of
leucocytes from both the innate and adaptive
immune compartments. Leucocytes progressively
infiltrate the uterine myometrium, decidua and
fetal membranes, along with elevated expression
of cytokines and chemokines consistent with a
pro-inflammatory profile, in the days and weeks
ahead of the final delivery phase.12–15 These
activated immune cells and their cytokine
mediators in turn erode the local anti-
inflammatory mechanisms of pregnancy tolerance
provided by progesterone and regulatory T (Treg)
cells.12,16,17 They also promote elevated synthesis
of pro-labour ‘uterine activation genes’ (UAGs)
encoding prostaglandins and tissue-remodelling
enzymes that override uterine quiescence and
drive progression to birth9,10 (Figure 1).

The inflammatory processes of term and
preterm birth are broadly comparable, but in
preterm birth there can be different initiating
triggers, kinetics and scale of response, and a lack

of coordinating regulation.10,18 For immature fetal
tissues and organs, premature exposure to high
levels of pro-inflammatory effectors can perturb
development. In particular, the immature fetal
lungs, gastrointestinal tract, brain and heart are
susceptible to damage, resulting in health
complications after birth with long-lasting
consequences.19 The severity of this ‘fetal
inflammatory response syndrome’ is worse for
babies born at lower gestational age.20 Early
preterm infants are at high risk of cerebral palsy,
neurocognitive dysfunction, and respiratory and
gastrointestinal complications.19,20 Even late
preterm infants have an elevated risk of chronic
diseases such as obesity, hypertension and
diabetes in adult life.1

Toll-like receptors (TLRs) are pivotal upstream
gatekeepers of innate immune activation and are
abundantly expressed in the placenta, fetal
membranes and uterus.21,22 In particular, TLR4 has
been identified as a key regulator of the
inflammatory processes that control normal on-
time birth,23 and premature activation of TLR4
signalling can provoke preterm delivery.
Premature induction of TLR4 signalling in several
compartments of the gestational tissues stimulates
pro-inflammatory cytokine and chemokine
expression and leucocyte infiltration (Figure 2)
that becomes amplified through loops of feed-
forward mechanisms to initiate uterine
transformation and drive progression to preterm
labour. Since TLR4 is a promiscuous sensor of both
microbial and sterile pro-inflammatory signals in
gestational tissues,5,24 including endogenous
agents released upon cell senescence or death
after injury or infection,25 it has the potential to
act as a point of convergence through which
microbial and sterile agents all trigger preterm
labour. From an evolutionary perspective, the
potential of TLR4 to sense and integrate signals of
fetal organ maturation, infection, and tissue
damage and senescence confers the benefit of
initiating birth when in utero conditions are
unfavorable for continued fetal development and
viability. Substantial clinical data point to a critical
role for TLR4 and innate immune activation in
humans – a large genome-wide association study
(> 40 000 women) identifies rare variants in genes
encoding negative regulators of innate immunity
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and anti-microbial defence, as predisposing to
preterm birth.26

In this review, we assemble evidence from
animal models and clinical studies implicating
TLR4 as a key rate-limiting mediator in preterm
birth and discuss novel compounds that inhibit
TLR4 signalling and their potential utility in
suppressing inflammation to extend gestation,
and protect the fetus from inflammatory injury.

TLR4 AND INNATE IMMUNE
ACTIVATION

TLR4 is one of 13 receptors, each with specific sets
of cognate ligands, which make up the mammalian
TLR system. Each TLR engages ligands released by
different microbes, known as pathogen-associated
molecular patterns (PAMPs). The key microbial
ligand for TLR4 is lipopolysaccharide (LPS,
endotoxin) from cell walls of Gram-negative
bacteria. TLR2 recognises peptidoglycan (PGN) and
lipoteichoic acid (LTA) common to several bacterial
taxa, while other TLRs bind double-stranded RNA

viral motifs or bacterial flagellin.27 TLR signal
transduction is complex and is regulated by
bioavailability of various proteins and co-
receptors.27 TLR4 is not directly ligated by products
of Gram-positive bacteria, but can amplify an
inflammatory response initiated by TLR2.28

Typically, LPS activation of TLR4 signalling
involves formation of a receptor complex
consisting of TLR4, MD-2 and adaptor molecules
including myeloid differentiation factor 88
(MyD88) and MyD88 adaptor-like (Mal), as well as
TIR domain-containing adaptor-inducing
interferon-beta (TRIF)25,27 (Figure 3). The MyD88-
dependent pathway stimulates activation of TGF-
b-associated kinase (TAK)-1, interleukin-1 receptor
(IL-1R)-associated kinases IRAK1 and IRAK4, TRF-
associated factor 6 (TRAF6) and mitogen-activated
kinases (MAPK), which in turn activate NF-jB via
the IjB kinase (IKK) complex, to initiate
transcription of genes encoding IL-1b, IL-6, TNF
and other pro-inflammatory cytokines.25,27 A
MyD88-independent pathway is also initiated
after TRIF-induced activation of the interferon-

Figure 1. Indicators of inflammatory activation in fetal and maternal tissues during preterm labour. Inflammatory activation is central to

parturition, with molecular and cellular changes that manifest in the fetal and maternal compartments. In maternal tissues including the

myometrium, decidua and cervix, recruitment of inflammatory leucocytes and elevated expression of pro-inflammatory cytokines and chemokines

are evident. These pro-inflammatory mediators upregulate uterine activation genes, in turn causing myometrial contractions and cervical

effacement and dilation. Macrophages infiltrate the placenta and cause elevated production of pro-inflammatory cytokines. The fetal membranes

(amnion and chorion) express elevated inflammatory cytokines, which access uterine tissues to promote uterine activation gene expression and

amplify MMP production, instigating fetal membrane rupture. In the amniotic fluid, elevated accumulation of inflammatory cytokines and

chemokines may be transmitted to the fetal and maternal tissues. The underlying pro-inflammatory drivers in preterm labour are a consequence

of infection, or sterile tissue insult or injury.
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regulated factor (IRF) family of transcription
factors, to mediate the transcription of type 1
interferons (IFN)25,27(Figure 3). There is extensive
cross-regulation between the TLRs controlled by
integrated regulatory interactions at the level of
receptor, adaptors, signalling molecules and
transcription factors, as well as attenuation by
microRNAs. This regulatory network is modifiable
through ‘innate immune memory’, whereby
previous exposures to inflammatory activation can
programme elevated tolerance, or higher
sensitivity, to subsequent inflammatory
activation.29 The significance of innate immune
memory in susceptibility to preterm birth is yet to
be explored.10

As well as microbial elements, TLRs recognise
endogenously produced agents released from

intracellular and extracellular compartments after
cell stress or necrotic cell death. Endogenous TLR
ligands are known as damage-associated
molecular patterns (DAMPs, or ‘alarmins’). DAMPs
provide a physiological signal of tissue stress and
damage, to initiate tissue defence and repair
mechanisms.25,30 When released at low levels,
DAMPs are important for modulating a
physiological immune response to regain tissue
homeostasis.25,30 After tissue injury or in chronic
pathological situations, DAMP release increases,
and overt and persistent inflammation can result.
There are synergistic interactions between DAMPs
and PAMPs, such that DAMPs released after
infection-induced tissue damage act to amplify
the inflammatory response beyond levels caused
by microbial products alone.

Figure 2. Damage-associated molecular patterns (DAMPs), pathogen-associated molecular patterns (PAMPs) and endogenous TLR4 activators in

gestational tissues during preterm labour. An array of TLR4 ligands and activators accumulate in fetal and maternal tissues where they drive an

amplifying inflammatory cascade of cytokine expression and leucocyte infiltration. TLR4 ligands including LPS and other PAMPs of microbial origin

are produced by microbial infection. Endogenous DAMPs produced during sterile tissue insult or injury can also activate TLR4. These DAMPs

include HSP70 and HMGB1 released from fetal membranes and PAF and SP-A released from fetal lungs. DAMPs can also be released after

microbial infection. TLR4 is abundantly expressed by leucocytes and other cell lineages in fetal membranes, uterine decidua and myometrium, and

cervical tissues. TLR4 ligands can be transmitted from amniotic fluid into the myometrium and cervix, to amplify inflammatory activation and

ultimately cause uterine contractions, cervical dilation and delivery of the fetus.
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TLR4 SIGNALLING AND THE LABOUR
CASCADE

An array of TLRs is expressed in a spatially and
temporally controlled manner in the fetal and
maternal compartments of the gestational tissues.
TLR4 is strongly expressed in the fetal membranes,
placental trophoblasts and endocervix22,31,32 and
is prominent on resident immune cells including
uterine NK cells, macrophages and
neutrophils.33,34 At term, responsiveness to TLR4
signalling is elevated in the chorioamniotic
membrane when increased transcription of TLR4
occurs.31

Mouse models have been instrumental in
defining TLR4 as a rate-limiting effector at the
apex of the inflammatory response driving uterine
activation and controlling timing of labour. In
mice, TLR4 is readily detectable in maternal tissues
including uterine decidua and cervix, fetal
membranes and placenta, and becomes elevated
in the cervix and uterus towards the end of
gestation.35,36 TLR4-deficient (Tlr4�/�) mice have
an extended gestation length and increased
perinatal mortality compared to wild-type
controls.23 This is associated with disrupted
expression of pro-inflammatory cytokines Il1b, I16,
I112b and Tnf normally induced in wild-type fetal
membranes, placenta and uterus prior to term
labour. Additionally, Tlr4�/� mice have delayed
expression of UAGs involved in transitioning the
uterus from a quiescent to contractile state,
notably prostaglandin F receptor, oxytocin
receptor and connexin-43. Leucocyte accumulation
is impaired in TLR4-deficient females, with fewer
neutrophils and macrophages in the placenta, and
fewer dendritic cells and more regulatory T cells
in the uterus, compared to wild-type mice. Unlike
TLR4 deficiency, genetic disruption of MyD88 does
not delay parturition,23 presumably since NF-jB
activation can occur without MyD88 and pro-
inflammatory cytokines are induced via both
MyD88 and TRIF-dependent signalling.37

TLR2 interacts with TLR4 to regulate labour, and
there is redundancy between the two receptors.
Mice with a null mutation in Tlr2 (Tlr2�/� mice)
have delayed labour compared to wild-type
mice,38 accompanied by delayed induction of
UAGs and reduced myometrial macrophage
accumulation.38 Additionally, amniotic fluid
macrophages isolated from Tlr2�/� mice in late

gestation exhibit altered expression of activation
markers Il1b and Arg1 mRNA.38

Since infection is not usually present in
healthy term labour, endogenous DAMPs
including HMGB1, cell-free DNA and oxysterols
released from senescent cells in fetal membranes
and placenta are implicated in TLR4 signalling in
term labour. There is compelling evidence that
pro-inflammatory signals released from the
maturing fetal lung, notably surfactant protein-A
(SP-A), SP-D and PAF, drive inflammation in fetal
membranes and uterine tissues to precipitate the
labour cascade.39 These agents likely provoke
fetal membrane cell stress and release of DAMPs
that amplify local inflammation through a TLR4-
dependent cascade (see later).

Figure 3. Schematic illustration of the MyD88-dependent and

MyD88-independent pathways mediated by TLR4 ligation to induce

NF-jB activation and cytokine gene expression. TLR4 activates the NF-

jB transcription factor via the adaptor molecules MyD88 and Mal,

which activate several kinases including TAK1 in the MyD88-

dependent pathway. The IRF transcription factor is activated by TLR4

via TRIF, an alternative adaptor molecule in the MyD88-independent

pathway. The TLR signalling antagonist (+)-naloxone binds MD-2 to

prevent TLR4 engaging with LPS or other ligands. Term labour is

mediated by the MyD88-independent but not the MyD88-dependent

pathway of TLR4 signalling, while preterm birth involves both

signalling pathways (see text for details)
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INFECTIOUS AND STERILE TRIGGERS
OF PRETERM BIRTH

In preterm labour, TLR4 ligands accumulate
prematurely as a result of infection and/or sterile
stressors in maternal and/or fetal compartments in
the gestational tissues. Intrauterine infection
occurs in 25–40% of preterm birth cases,
particularly in early preterm birth.8 In the event of
ascending uterine infection, bacteria progressively
infiltrate the decidua, chorion and amnion; then,
ultimately microbial invasion of the amniotic
cavity (MIAC) and fetal infection occur.4,8 Around
20–30% of women with spontaneous preterm
birth exhibit MIAC despite intact fetal
membranes, when sensitive PCR-based detection
tests are used.8 Gram-negative bacteria associated
with ascending infection and chorioamnionitis
include Escherichia coli and Fusobacterium species.
Other common bacteria associated with preterm
delivery are the genital mycoplasmas, Ureaplasma
parvum and Mycoplasma hominis, and Gram-
positive organisms such as Streptococcus
agalactiae, peptostreptococcus spp. and
Gardnerella vaginalis18 that produce LTA or PGN.

Infection is associated with elevated
accumulation of pro-inflammatory cytokines in
the amniotic fluid of preterm labouring women,
with higher levels of IL-1b, TNF and IL-6 compared
to women without infection.11 Increased fetal
membrane expression of inflammatory signalling
molecules, receptors and chemokines including
CCL2, CCL3, CCL5, CCL20 and CXCL6 is implicated
in regulating recruitment of inflammatory
leucocytes and amplification of the inflammatory
response.10,11 Microbial products act via TLR4
ligation to stimulate inflammatory chemokine
release from leucocytes in the amniotic fluid, with
the consequence of recruiting more leucocytes
from the maternal circulation to amplify the
inflammatory pathways (Figure 2). TLR4
expression is upregulated by infection, in part due
to infiltration of TLR4-expressing leucocytes in
tissues.33,34

In preterm birth without infection, excessive
DAMPs including HSP70, HMGB1, cell-free DNA,
uric acid and oxysterols released from stressed and
dying gestational tissues are thought to provoke
pro-inflammatory activation.40,41 These DAMPs
accumulate faster after tissue injury than in on-
time labour, causing parturition to be
prematurely triggered, particularly if anti-
inflammatory protective mechanisms are weak or

insufficient.4,10,18 Many of these DAMPs are
ligands for TLR4.25 Their accumulation is
associated with, and may stimulate, elevated fetal
lung synthesis of PAF and surfactant proteins.42,43

that do not bind directly to TLR4, but require
TLR4 for amplification of their pro-inflammatory
effects44–47 (see later).

PAMPS INDUCE TLR4-MEDIATED
INFLAMMATION IN PRETERM
DELIVERY

Mice with genetic deficiency in TLR4 provide
compelling evidence that TLR4 is critical for
preterm labour induced by Gram-negative
bacteria. C3H/HeJ mice that carry a spontaneous
mutation in Tlr4 do not deliver preterm after
intrauterine administration of heat-killed E. coli.
In contrast, C3HeB/FeJ mice that express Tlr4
exhibit 100% preterm delivery.48 Predictably,
Tlr4�/� mice are also resistant to preterm labour
induced by LPS.23 Tlr4�/� mice and C3H/HeJ mice
both exhibit a lower fetal death rate and
decreased placental necro-inflammatory response
after administration of Fusobacterium nucleatum
compared to wild-type mice.49 Interestingly,
fetal inflammatory injury depends on fetal as
well as maternal TLR4 signalling, since LPS in
the maternal circulation accesses fetal tissues,
and maternal Tlr4�/� null mutation does not
protect wild-type fetuses from inflammatory
injury.50

In mice, MyD88 facilitates LPS-induced preterm
labour (in contrast to term labour), while TRIF
appears dispensable at least for TLR4-mediated
triggers.51 Myd88�/� and Myd88/Trif�/� mice do
not deliver preterm and exhibit normal fetal
viability after administration of intrauterine heat-
killed E. coli.51 In contrast, Trif�/� and wild-type
mice are susceptible to preterm delivery and
fetal death in utero.51 Nuclear NF-jB is reduced
in the uterus of Myd88�/� and Myd88/Trif�/�

mice after E. coli delivery, accompanied by lower
expression of Il1b and Tnf mRNA, compared to
Trif�/� and wild-type mice.51 There is evidence in
mice that innate immune memory can alter
sensitivity to TLR4 triggers. Activation of the type
1 IFN/IFNAR axis was shown to increase later
susceptibility to LPS-induced TLR4 activation,
exacerbating pro-inflammatory cytokine
induction and reducing the dose of secondary
inflammatory challenge required for preterm
birth.52
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TLR4 signalling and inflammatory cytokines

Mouse models have been informative for defining
the feed-forward mechanisms that amplify TLR4
signals to promote uterine transformation and
cause fetal injury. In late gestation pregnant mice,
IL-1a, IL-1b, IL-6 and TNF are synthesised in the
uterus and fetal membranes after transcriptional
activation as early as 3–4 h after LPS or E. coli
administration.53,54 These cytokines in turn drive
upregulation of uterine activation genes Ptgfr,
Oxtr and Gja153,55 in a TLR4-dependent
manner.23,48 In Tlr4�/� mice, expression of Il1a, Il6,
Il12b, Tnf and Il10 in fetal membranes, placenta
and uterus is blunted after LPS administration,
showing TLR4 is upstream and necessary for
cytokine induction.23

IL-1b signalling is critical, as demonstrated by
the potent efficacy of IL-1R antagonist to block
preterm birth and fetal inflammatory injury after
LPS exposure.56,57 Additionally, mice with genetic
deficiency in both the IL-1b and TNF receptors
(Il1r1/Tnfrsf1a�/�) exhibit reduced preterm
delivery in response to heat-killed E. coli,
compared to wild-type mice.58 IL-6 is also
important, since anti-IL-6-neutralising antibody
and null mutation in the Il6 gene both protect
mice from LPS-induced preterm birth.55,59 IL-6 and
IL-1b may amplify synergistic pathways since
neither Il6 nor Il1b null mutation fully abrogate
susceptibility to preterm birth induced by
intrauterine heat-killed E. coli.60,61

IL-10 counteracts the effects of pro-
inflammatory cytokines to protect mice from
preterm birth. Mice with Il10 null mutation have
greater susceptibility to LPS-induced preterm
birth.53,62 IL-10 suppresses pro-inflammatory IFN-c
and TNF production,53 and neutralising IFN-c and
TNF protects Il10�/� mice from preterm delivery.62

In part, IL-10 acts through stabilising an anti-
inflammatory phenotype in NK cells and T
cells.62,63

TLR4 and inflammatory leucocytes

Mouse models also allow the biological roles of
specific leucocyte lineages in preterm birth to be
defined. After administration of a microbial
stimulus, cytokine induction is rapidly followed by
influx of inflammatory leucocytes into gestational
tissues. This response resembles the immune cell
changes that accompany term birth and are
attributable to direct and indirect effects of TLR4

signalling. Innate immune cells are the first and
largest component of the leucocyte infiltrate,
with neutrophils arriving in the myometrium and
decidua within hours after intraperitoneal
LPS.64,65 Intrauterine LPS administration causes a
similar response, with accumulation in the fetal
membrane, placenta and decidua before the
myometrium.66 Surprisingly, depletion of
neutrophils does not delay preterm delivery,66

implying that neutrophils are not essential for
parturition.

Macrophages accumulate in the uterine
decidua, but not myometrium, during LPS-induced
preterm birth.64,67 They also contribute to tissue
remodelling in the cervix, since macrophage
depletion 4 h before intravaginal administration
of LPS suppressed cervical collagen degradation
and MMP9 activity, impeding progression to
delivery.68

Cells of the adaptive immune response are also
involved. LPS administration causes activation of T
cells and NK cells in maternal blood and placenta
in mice, while anti-TLR4 antibody administration
diminishes the T-cell and NK cell changes.69 Mice
deficient in invariant NK cells have an attenuated
response to LPS-induced preterm delivery,
accompanied by a lower percentage of NK cells
and T cells after LPS administration.70 This
underscores a crucial role of invariant NK cells in
activating decidual NK cells, dendritic cells and T
cells involved in preterm birth.

A shift towards an immunogenic profile in T
cells can reflect loss of immune tolerance, to
increase susceptibility to preterm birth. Chronic
chorioamnionitis characterised by excessive
effector T cells is common in late preterm birth in
women and is presumed to reflect excessive
erosion of maternal allograft tolerance.71 T- and
B-cell-deficient mice deficient in recombination
activation gene (Rag1�/�) are more susceptible to
LPS-induced preterm delivery than wild-type
mice.72 Deficiency in anti-inflammatory Treg cells
likely elevates susceptibility to LPS, since transfer
of CD4+ T cells before LPS injection protected
Rag1�/� mice from premature delivery.72

CD4+FOXP3+ uterine Treg cells normally decrease
after LPS treatment,67 supporting the view that
Treg cells suppress the inflammatory response and
constrain premature delivery induced by TLR4
activation.

Together, the data from genetic mouse models
provide evidence of a specific causal sequence in
the roles of cytokines and immune cells leading to

ª 2020 The Authors. Clinical & Translational Immunology published by John Wiley & Sons Australia, Ltd on behalf of

Australian and New Zealand Society for Immunology Inc.
2020 | Vol. 9 | e1121

Page 7

SA Robertson et al. TLR4 inhibitors and preterm birth



preterm birth. The results point to TLR4 signalling
as a key effector at the apex of the inflammatory
cascade and show TLR4 ligation causes MAPK and
NF-jB activation that induces IL-1b and IL-6 to
elicit recruitment of pro-inflammatory leucocytes,
shift the phenotypes of regulatory immune cells
and ultimately induce expression of uterine
activation and cervical remodelling genes
(Figure 4).

DAMPS AND TLR4 ACTIVATION IN
PRETERM BIRTH

Release of DAMPs from placental membranes
occurs as a consequence of their progressive
senescence in late gestation and is likely accelerated
by fetal maturation signals.40 In the setting of

preterm labour in the absence of infection, tissue
damage causes inflammation and DAMP
accumulation (Figure 2), after DAMP release from
stressed or necrotic cells and their extracellular
structures. In sites of infection, DAMPs accumulate
in affected tissue and accelerate inflammation
ensuing from PAMP-induced TLR activation. Several
DAMPs known to be ligands for TLR4 accumulate in
gestational tissues prior to labour and become
prematurely and more extensively increased in
preterm labour. These endogenous TLR4 regulators
likely signal through both MyD88 and TRIF-
dependent IRF1, and also via other pattern
recognition receptors including receptor for
advanced glycation end products (RAGE).25

High-mobility group box-1 (HMGB1)

The chromatin-associated protein HMGB1 is a
well-known DAMP released from stressed and
necrotic cells. Both TLR4 and TLR2, as well as the
RAGE receptor, can bind HMGB1 to trigger NF-jB
activation and inflammatory cytokine release.73

HMGB1 induces TNF, IL6 and PTGS2 expression in
human myocytes,74 promotes TLR2 and TLR4
expression and amplifies IL-1b, IL-6 and TNF
production, in human fetal membranes.75 HMGB1
concentrations are elevated in amniotic fluid of
women at term in labour, especially in women
with chorioamnionitis,76 due to activated
macrophages that are an abundant source of
HMGB1.77 Increased HMGB1 transcription occurs
in fetal membranes in preterm labour compared
to normal term labour75 and is elevated by intra-
amniotic infection.78

Nonmicrobial insults such as oxidative stress, or
premature fetal membrane ageing and
senescence, also induce HMGB1.74,75 Stretch is
another trigger – studies using intra-amniotic
balloon inflation to mimic uterine overdistension
to elicit preterm delivery in pigtail macaques
show that stretch is associated with elevated
amniotic fluid HMGB1 as well as cytokines,
chemokines and prostaglandins.79

The fetus also contributes to HMGB1
production. HMGB1 is commonly detected after
fetal injury induced by inflammation in humans
and is a prominent DAMP at sites of fetal damage
in mouse models.80 A key role for HMGB1 in
premature parturition is indicated by experiments
showing that preterm delivery and neonatal
death are induced by HMGB1 administration to
the amniotic cavity in mice.81

Figure 4. Toll-like receptor-4 (TLR4) signalling is an upstream driver

of inflammation in spontaneous preterm labour. Exposure to

pathogen-associated molecular patterns (PAMPs) in the event of

infection, or damage-associated molecular patterns (DAMPs) in the

event of sterile tissue insult or injury associated with oxidative stress,

placental senescence or maternal immune imbalance, causes aberrant

activation of TLR4 to initiate inflammation in preterm labour.

Activated TLR4 acts to induce synthesis of pro-inflammatory cytokines

including IL-1b, IL-6, IL-8 and TNF, which together with chemokines

mediate recruitment of pro-inflammatory leucocytes including

neutrophils, macrophages and T cells. Platelet-activating factor (PAF)

and surfactant protein-A (SP-A), released from fetal lungs into

amniotic fluid, further drive TLR4-mediated cytokine induction to

amplify the inflammatory cascade. In turn, inflammatory cells and

mediators induce upregulation of uterine activation genes that cause

uterine contractions, rupture of fetal membranes, and cervical

ripening and dilation, to ultimately result in delivery of the fetus.

Existing pharmacological strategies for delaying threatened preterm

labour include antibiotics to limit microbial growth, progesterone to

inhibit pro-inflammatory mediators and anti-tocolytic agents to

suppress uterine contractions. (+)-Naloxone compounds antagonise

TLR4 activation, at the apex of the inflammatory cascade.
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Cell-free DNA

Placental growth involves substantial release of
microvesicle-encapsulated, cell-free fetal DNA-
containing apoptotic trophoblasts into the
maternal circulation.82,83 Substantial amounts of
cell-free DNA are shed as gestation progresses,
reaching gram amounts per day. Particularly in
late gestation, histone-associated cell-free DNA
from the fetal membranes is released into
amniotic fluid where it promotes inflammation
and oxidative stress.82 Both the nucleic acid and
protein (histone) constituents of the cell-free DNA
are pro-inflammatory and comprise structures that
are potent ligands of TLRs. TLR9 is implicated in
mouse studies as a major mediator of fetal loss
after inflammation induced by cell-free DNA.84

However, in humans TLR9 exerts distinct functions
and TLR4 and TLR2 are implicated as principal
mediators of the response to cell-free DNA.85

Heat-shock protein 70 (HSP70)

HSP70 is a well-characterised HSP released from
stressed and necrotic cells and is a known ligand
for TLR4.86 The concentrations of HSP70 increase
in amniotic fluid towards the end of gestation
and during labour.87,88 A positive association
between serum HSP70 and gestational age is
found in healthy pregnant women.89 HSP70 is
detectable in the maternal decidua, as well as
trophoblasts, Hofbauer and endothelial cells of
the placenta.90 The extensive tissue remodelling
and cell death prior to fetal membrane rupture
are likely to promote release of HSP70 at term.91

Preterm labour is associated with elevated HSP70
concentrations in umbilical cord serum, placenta
and maternal serum.92 In the event of infection,
HSP70 release from human fetal membranes is
further increased.87,93 While HSP70 induces
inflammatory cytokines through NF-jB activation
in other tissue systems,86 this has not been studied
in gestational tissues. A recent study in mice
showed intra-amniotic HSP70 administration does
not directly elicit preterm birth, but can induce
fetal loss and adverse neonatal outcomes.94

Uric acid

Uric acid has antioxidant activity at physiological
levels, but when it accumulates can take on a
crystalline particulate form that results in
oxidative damage and activates inflammation via

TLR4.30 Similar effects of elevated amniotic fluid
uric acid originating in fetal urine occur in the
placenta and gestational tissues, where uric acid
induces IL-1b in trophoblasts via inflammasome
activation.95 A large cohort study has linked
maternal hyperuricemia during the third trimester
of pregnancy with preterm delivery, in women
where infection and other clinical risk factors
were absent.96

Oxysterols

Oxysterols are pro-inflammatory and pro-apoptotic
compounds formed when cholesterol oxidises in
response to elevated levels of reactive oxygen
species or increased activity of oxidative enzymes.
Serum concentrations of oxidised low-density
lipoprotein carrying oxysterols are increased in
pregnancy,97 particularly in preeclampsia98,99 and
fetal growth restriction.100 Two oxysterols, 25-
hydrocholesterol and 7-ketocholesterol, act to
impair trophoblast differentiation and fusion, and
at high concentrations cause cell death.101 At non-
toxic concentrations, both 25-hydrocholesterol and
7-ketocholesterol elicit activation of placental TLR4
and induce IL-6, CCL4 and TNF production in
primary trophoblasts, in a TLR4-dependent
manner.101

FETAL TLR4 REGULATORS IN PRETERM
BIRTH

In addition to DAMPs, other effector molecules
released from fetal or placental tissues under
sterile or infection-associated conditions stimulate
TLR4-dependent pathways to promote parturition
and preterm birth. These agents include PAF,44,45

SP-A and SP-D,47 and fetal fibronectin and related
extracellular matrix molecules.102 While these
agents do not meet the classical definition of
DAMPs as intracellular alarmins released upon cell
stress or necrotic cell death, they nevertheless act
to amplify pro-inflammatory signalling in a TLR4-
dependent manner at parturition, as detailed
below.

Platelet-activating factor (PAF)

A potent mediator of inflammation implicated in
both sterile and infection-associated preterm
labour is the glycophospholipid factor PAF.39,45

PAF is synthesised by alveolar type II cells in the
fetal lung and accumulates in amniotic fluid prior
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to labour in mice103 and humans.104,105 PAFR
expression becomes progressively elevated in late
gestation, in the uterus and cervix of mice,106 and
the myometrium, cervix, placenta and fetal
membrane of humans.39 Studies in mice show that
fetal lung-derived PAF in amniotic fluid
contributes to uterine activation and transition to
a contractile state,107 after elevating NF-jB
activation in uterine cells to elicit inflammatory
cytokine synthesis.39,103

Mice with genetic deficiency in PAF synthesis
exhibit delayed labour.103 Intra-amniotic
administration of PAF reverts the phenotype to
normal term parturition and induction of
expression of contractile-associated genes Gja and
Oxtr.103 Intrauterine administration of carbamyl
PAF (cPAF) in late gestation causes preterm
delivery in CD-1 mice.106

Similarly in women, PAF accumulates in
amniotic fluid after release from the maturing
fetal lung.104 PAF elicits upregulation of the
uterine activation gene PTGS2 in choriodecidual
cells and stimulates contractile activity in
myometrial cells. In the cervix, PAF induces
secretion of pro-inflammatory cytokines and
MMP1.39 Amniotic fluid PAF is elevated in women
with preterm delivery.42,108

The feed-forward effects of PAF on parturition
depend on TLR4-mediated inflammation. Mice
with a genetic deficiency in TLR4 appear resistant
to PAF-induced preterm labour, with substantially
reduced expression of IL-6 and IL-1b in decidual,
myometrial and placental cells after cPAF
administration.109 This likely reflects a
requirement for TLR4 in amplifying inflammation
induced by PAF, as several PAF-induced mediators
of inflammation are ligands for TLR4, or interacts
with TLR4 signalling.25,30 Immune cells are highly
responsive to PAF-induced TLR4 activation.
Peritoneal macrophages from Tlr4�/� mice secrete
less TNF and CCL5 after in vitro culture with cPAF,
compared to WT controls,44 and in intestinal
epithelial cells, cPAF activates TLR4 to drive robust
pro-inflammatory signalling.45

Platelet-activating factor induces upregulation
of TLR4 synthesis and enhances sensitivity to
PAMP and DAMP ligation.45 An interaction
between TLR4 and the PAF receptor is also
implicated in amplifying responses induced by
TLR2 signalling, such that Gram-positive bacteria
cause release of endogenous pro-inflammatory
mediators recognised by PAF receptor and TLR4.28

This explains how endogenous PAF acts to

enhance infection-induced inflammation in
maternal and fetal tissues, to accelerate preterm
delivery in mice.

Furthermore, PAF acts to amplify PAMP-induced
preterm birth. Elevated PAF secretion along with
increased Tnf, Il1b and Ccl5 expression is detected
in the uterus, decidua and placenta of mice with
a null mutation in PAF acetylhydrolase (Paf/af�/�

mice), conferring greater susceptibility to preterm
birth induced by heat-killed E. coli.44

Administration of a PAF antagonist prior to
intrauterine LPS also protects mice from preterm
birth.106 Induction of preterm birth by cPAF
requires TLR4 expression. Tlr4�/� mice have
substantially lower preterm birth rates and a
reduced placental and decidual cytokine response
to cPAF.109

Surfactant proteins

Surfactants are phospholipid-rich proteins of the
collectin family synthesised by pulmonary alveolar
type II cells to reduce surface tension and enable
mature lung function after birth.103 Both SP-A
and SP-D exhibit capacity to modulate various
aspects of the immune and inflammatory
response, through mechanisms that at least partly
depend on TLR4.110 Several studies indicate roles
for SP-A and SP-D in regulating the timing of
parturition and birth although the specific
mechanisms are yet to be defined.43

Experiments in mice show that expression of
Spa mRNA commences on gd 15 in the fetal lung
and progressively increases until delivery 3–4 days
later.39 SP-A induces NF-jB activation to elicit TNF
and IL-10 production47 and causes preterm birth
when administered to the amniotic cavity in
mice.111 Amniotic fluid macrophages are central
mediators in this process – they respond to SP-A
by trafficking into the uterus, where they display
activated nuclear NF-jB and elevated IL-1b.111

Remarkably, SP-A and SP-D deficiency in Spa/d�/�

mice causes delayed parturition in the second
pregnancy, but not the first pregnancy, implying
an interaction with the immune response and/or
tissue repair mechanisms affected by parity.38

Spa/d�/� mice have reduced myometrial
expression of Il1b and Il6 and the UAGs, Gja and
Oxtr, in late gestation compared to wild-type
controls.38 In mice engineered to overexpress
human SP-A, elevated SP-A protein in fetal lungs
and amniotic fluid does not affect duration of
pregnancy. However, LPS administration in late
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gestation elicited higher levels of TNF and IL-10 in
fetal and uterine tissues, suggesting that SP-A acts
to amplify intrauterine inflammatory mediators.112

The kinetics of SP-A onset in the human fetal
lung suggests a more complex role than in mice.
SP-A synthesis begins around the final 2 months
of gestation, and amniotic fluid SP-A accumulates
progressively until term,113 but is lower in women
in labour than women not in labour.114 In women
with chorioamnionitis, SP-A synthesis is elevated
and appears to promote maturation of the fetal
lung, reflected in lower fetal respiratory distress
after birth.114 This may explain how
chorioamnionitis promotes preterm labour, since
SP-A released into amniotic fluid has potential to
target TLR on fetal membranes and stimulate
production of PGE2.

115 Myometrial cells also
respond to SP-A with increased PTGS2 synthesis,116

suggesting SP-A sequestered into the myometrium
might induce pro-inflammatory cytokines and
induce UAPs in vivo. In contrast, SP-A exerts anti-
inflammatory effects in human amnion explants,
acting to downregulate expression of IL1B, CXCL2
and CXCL5.117 The different effector functions of
SP-A might be explained by different receptor
protein interactions with microbial products.43

Concurrent administration of SP-A and LPS
decreased the preterm delivery rate compared to
mice administered LPS alone,118 and SP-A was
associated with lower Tnf, Il1b and Ccl5
expression in placenta and fetus. Further work is
thus required to define how SP-A interacts with
TLR signalling induced by PAMPs to regulate
inflammation in gestational tissues and the timing
of labour.

TLR4 AS A TARGET FOR PRETERM
BIRTH PREVENTATIVE THERAPEUTICS

Collectively, these studies provide convincing
evidence that TLR4 is a key mediator of microbial
and endogenous pro-inflammatory effectors
originating in the uterus, fetus and placenta, with
a pivotal role in provoking parturition in a wide
range of preterm and term scenarios. As well as
infection-associated preterm birth, TLR4 is
implicated in sensing and amplifying amniotic
fluid PAF and SP-A, critical fetal signals that
trigger parturition to coincide with fetal
maturation and ability to survive ex utero,39 and a
key receptor for HMGB1 and other DAMPs
released by fetal membranes in response to
senescence, injury and oxidative stress.40,41 TLR4 is

associated with leucocytes as well as non-
leucocytic cell lineages in the fetal membranes
and so is ideally positioned to respond to the
DAMPs and fetal signals in amniotic fluid.
Leucocytes may be particularly sensitive –
macrophages in the amniotic cavity express high
levels of TLR4 and are known to amplify
inflammation in late gestation, through release of
pro-inflammatory cytokines TNF and IL-1b, and
matrix-remodelling enzymes that facilitate fetal
membrane rupture during labour.

This scheme highlights TLR4 as an attractive
drug target for delay or prevention of preterm
birth (Figure 4). Studies in rodent and primate
models provide evidence that blocking TLR4
signalling using bioactive or pharmaceutical
agents is effective in preventing preterm delivery
triggered by microbial or sterile stimuli. Blockade
of TLR4 signalling with anti-TLR4 monoclonal
antibody reduces leucocyte activation and the
incidence of preterm labour induced by LPS.69

Another TLR4 antagonist, lipid A mimetic CXR-
526, is effective in mice given F. nucleatum, a
Gram-negative bacterium that causes preterm
birth and premature rupture of membranes in
women.49 Although the lipid A mimetic did not
inhibit bacterial colonisation of placental tissues,
pro-inflammatory cytokine expression and the
extent of necrosis were reduced.49 Initial results in
primate models are also promising. In rhesus
monkeys, lipid A mimetic was effective in
suppressing cytokines in amniotic fluid, as well as
prostaglandin production and uterine contractile
activity, without apparent side effects such as
fever or complement activation.119

To date, most studies have concentrated on
preterm birth as an endpoint rather than fetal
outcomes. However, TLR4 antagonism may also be
effective in prevention of fetal inflammatory
injury resulting from preterm birth. Studies in rats
show that after treatment to induce neonatal
hyperoxia, a TLR4 antagonist LPS from the
photosynthetic bacterium Rhodobacter
sphaeroides (LPS-RS) can prevent cardiac pro-
inflammatory cytokine induction and left
ventricular hypertrophy and dysfunction.120

(+)-Naloxone and related compounds –
novel TLR4 antagonists

Using mouse models, we have explored the utility
of novel TLR4 antagonists of the (+)-naloxone
family as pharmacological interventions for preterm
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labour.121,122 (+)-Naloxone has anti-inflammatory
activity similar to that originally described for (�)-
naloxone, but unlike (�)-naloxone, it does not bind
opioid receptors and specifically antagonises TLR4
signalling.121 (+)-Naloxone is a TLR4 antagonist, that
is the positive isomer of the opioid receptor
antagonist (�)-naloxone,121 a well-described non-
selective antagonist of the µ-opioid receptor that is
commonly prescribed for opioid addiction,
including in pregnant women and neonates.123 (+)-
Naloxone does not have opioid actions, but binds
MD-2 to prevent TLR4 engaging with LPS or other
ligands124 (Figure 3), thereby suppressing NF-jB
activation and IL-1b, IL-6 and TNF production.125,126

In contrast to anti-TLR4-neutralising antibodies,69

(+)-naloxone is a small molecule with potential to
penetrate the placenta127 and has a
pharmacokinetic profile suited to short systemic
exposure or longer term delivery if required.

As a first approach, we tested the effect of (+)-
naloxone on birth outcomes in wild-type mice.
When (+)-naloxone was given in late gestation,
there were no adverse effects on pup health
despite parturition and labour being delayed,
consistent with an essential role for TLR4 in
normal on-time birth.23 We went on to
demonstrate in an LPS model of preterm birth
that (+)-naloxone is highly effective in suppressing
inflammatory cytokine induction and progression
to preterm delivery, protecting against fetal death
and postnatal loss.128

There are limitations of LPS models of preterm
birth, given that clinically more than one TLR
ligand would usually be involved. It is predictable
that, as a TLR4 antagonist, (+)-naloxone should be
effective in blocking LPS actions. Therefore, it was
important to evaluate the efficacy of (+)-naloxone
in other models. A similar protective effect of (+)-
naloxone was seen in preterm birth induced by
intrauterine administration of heat-killed E. coli,
which more closely mimics the clinical situation.
Furthermore, the local induction by E. coli of
inflammatory cytokine genes Il1b, Il6, Tnf and Il10
in fetal membranes was suppressed, and (+)-
naloxone similarly attenuated cytokine expression
in the placenta, uterine myometrium and
decidua.128 These data demonstrate that (+)-
naloxone is a highly effective inhibitor of the
inflammatory cascade of preterm parturition in
models of infection-induced preterm birth.
Importantly, pups born after (+)-naloxone
treatment were protected from antenatal and
postnatal death, and exhibited survival rates to

weaning and growth trajectories indistinguishable
from control mice.128

We have also utilised (+)-naltrexone, which is
structurally and functionally similar to (+)-
naloxone,121,122 to suppress cPAF-induced preterm
birth.109,129 Using a dose of cPAF sufficient to
cause preterm delivery in 65% of Balb/c mice,
administration of (+)-naltrexone at 12-h intervals
for 48 h following cPAF completely blocked
preterm birth and maintained pup viability and
birthweights. The elevated levels of IL-1b, IL-6 and
IL-10 otherwise seen in decidua and myometrium
after cPAF treatment were suppressed by (+)-
naltrexone, consistent with a mechanism involving
suppression of TLR4-mediated inflammatory
activation.

The high survival rates and lack of overt adverse
impact of (+)-naloxone treatment in pups are
encouraging, although studies to investigate
impact of (+)-naloxone on fetal tissues susceptible
to inflammatory injury are not yet completed. In a
recent study, we showed that (+)-naloxone can
protect against adverse metabolic programming
effects induced by fetal exposure to inflammatory
mediators.130 In adult progeny born after LPS
challenge in utero, male but not female offspring
exhibited elevated adipose tissue mass, reduced
muscle mass, and elevated plasma leptin
concentrations at 20 weeks of age. These effects
were largely reversed by co-administration of (+)-
naloxone. LPS-induced expression of Il1a, Il1b, Il6,
Tnf and Il10 in fetal brain, placental and uterine
tissues, where (+)-naloxone suppressed the LPS-
induced cytokine expression. Fetal sex-specific
regulation of cytokine expression was evident,
with higher Il1a, Il1b, Il6 and Il10 induced by LPS
in tissues associated with male fetuses and greater
suppression by (+)-naloxone of Il6 in females.
These data demonstrate that modulating TLR4
signalling with (+)-naloxone protects against
inflammatory diversion of fetal developmental
programming in utero, associated with
attenuation of gestational tissue cytokine
expression in a fetal sex-specific manner. Male
fetuses often suffer more extensive damage or
higher rates of fetal loss, with surviving fetuses
experiencing a more debilitating legacy of
inflammatory injury.131 The greater disposition of
males to TLR4-mediated inflammatory cytokine
induction is consistent with a higher risk strategy
than in females, where the same challenge
induced a lower cytokine response that was more
readily attenuated by TLR4 signalling inhibition.
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The results suggest that targeting TLR4 can be
effective for protecting against developmental
programming effects of fetal exposure to
maternal inflammatory mediators.130 Future
studies will focus not just on metabolism but also
on neurocognitive and immune function, which
like metabolic dysfunction are highly vulnerable
to inflammation-induced fetal programming.132

These data imply that (+)-naloxone protects the
developing fetus from cytokines synthesised locally
in fetal tissues after LPS accesses the fetal
circulation.50 Elevated inflammatory cytokines in
maternal and placental tissues can also impact the
fetus through indirect effects on placental vascular
integrity, transport function and nutrient
supply.133 It seems likely that (+)-naloxone also
protects the placenta from inflammatory damage,
although this requires formal evaluation. Studies in
the 1980s in women administered intrathecal
morphine for labour pain relief indicate that
although (�)-naloxone crosses the placental
barrier, there is no evident of teratogenicity or
adverse fetal effects.127 It is not yet known whether
the anti-inflammatory protective effects of (+)-
naloxone are achieved by (+)-naloxone acting
directly in fetal tissues or by suppressing release of
pro-inflammatory DAMPs that would otherwise
adversely affect the placenta or fetus.

(+)-Naloxone, (+)-naltrexone and related drugs
may have clinical advantages compared to
neutralising antibodies and other TLR4 antagonist
compounds. (+)-Naloxone potently blocks LPS-
induced TLR4-mediated signalling in several non-
pregnancy models, suppressing NF-jB activation and
inhibiting TNF and IL-1b induction in immune
cells.125,134 In humans, the closely related compound
(�)-naloxone has an established safety profile and is
approved for use in pregnancy, with no known
adverse neonatal effects.135,136 Given the lack of
opioid receptor activity of (+)-naloxone, (+)-
naloxone has distinct pharmacodynamic advantages
in a clinical setting over the currently available (�)-
naloxone. In particular, the stereoselectivity of
opioid receptors124 would permit use of exogenous
opioids for maternal pain relief in labour.

Intervention strategies for TLR4 signalling
inhibitors

These data indicate further studies are warranted to
investigate small-molecule inhibition of TLR-driven
inflammation as a strategy for fetal protection and
delaying preterm birth. Three different intervention

scenarios can be envisaged. Firstly, there is an
urgent need for treatments to effectively curtail
threatened preterm birth at clinical presentation, to
prolong gestation and protect the fetus against
inflammatory injury, while allowing a window of
time for antibiotic therapy and corticosteroid
treatment to promote fetal lung maturation. In the
event of infection, TLR4 inhibitors could be
administered together with antibiotics. Even during
successful antibiotic therapy, substantial amounts of
PAMPS are generated. A TLR4 inhibitor would
reasonably be a useful adjunct to antibiotics, acting
to suppress inflammatory activation.137

Secondly, TLR4 antagonists might have value as
prophylactic agents that target the initiating
triggers, and feed-forward signals, to dampen or
arrest parturition before overt symptoms arise.
Predictive tests would be required to identify at-
risk women in early gestation, and allow tailored
interventions appropriate to individual clinical
parameters. TLR4 inhibitors may be particularly
helpful in pregnant women at high risk of
excessive inflammation as a result of exposures to
environmental toxins or stressors, which can
elevate TLR4 expression in the absence of
infection.138,139 Other at-risk women can be
identified on the basis of TLR4 gene
polymorphisms associated with an increased risk
of spontaneous preterm delivery.140,141

Thirdly, there is potential for TLR4 inhibitor use in
preterm neonates to suppress progression of fetal
inflammatory response syndrome.20 Sequalae of an
in utero inflammatory insult include fetal and
newborn brain white matter destruction, cerebral
palsy, necrotising enterocolitis and chronic lung
disease,4 causing neurodevelopmental disability
and a range of recurrent health problems in
childhood.19 Inflammation can provoke fetal brain
injury even when inflammation is insufficient to
activate parturition,142 indicating the risk of
sustained exposure to inflammatory mediators in
utero. These complications have lifelong
consequences for the survivors of preterm birth,
and treatments that safely and effectively reduce or
resolve inflammation in the neonatal phase will
deliver enormous benefit.19

CONCLUSION AND FUTURE
DIRECTIONS

TLR4 agonists, either of microbial origin or
originating endogenously after tissue injury, are
clearly implicated in the pathophysiological
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mechanisms of spontaneous preterm birth, and
fetal inflammatory response syndrome. Compelling
preclinical studies show that TLR4 has a master
role in parturition-associated inflammation and is
involved in its initiation, progression and
persistence. TLR4 antagonism has a clear
pharmacological advantage over current
therapeutic strategies for treating preterm labour,
in targeting the apex of the inflammatory cascade.
Treatment scenarios including prophylactic and
therapeutic administration to at-risk women, or to
premature neonates, can be envisaged. These
alternative administration scenarios are associated
with different clinical, pharmacological, and
ethical challenges and imperatives.

A pharmacologic strategy targeting TLR4 would
overcome an important limitation of existing
tocolytic agents, such as prostaglandin inhibitors,
that attempt to stem uterine maturation and
contraction, or progesterone, which offers less
effective anti-inflammatory suppression and has
limited efficacy6,10 (Figure 4). These agents do not
suppress the upstream origins of pro-inflammatory
activation and can alter homeostatic pathways
necessary to maintain maternal and fetal organ
function.2,143 Stemming inflammation at the level
of TLR4 activation is expected to provide an added
benefit of protecting the fetus from inflammatory
injury. Tocolytic agents that suppress uterine
contractility, the final phase of labour, do not
impact upstream pro-inflammatory activity and so
leave fetal tissues vulnerable to inflammatory
cytokines.2,143

Small-molecule inhibitors of the (+)-naloxone
family are potential drug candidates that offer
considerable promise and warrant further
development. Amongst the benefits of this family
of compounds is their relatively straightforward
synthesis, stability during handling and transport,
and potential suitability for use in low resource
settings, where the majority of infant mortality
occurs.1 Moreover, they readily penetrate
gestational tissues and access the placenta and
fetal compartments, and, on the basis of data
from the negative isomer (�)-naloxone, are
predicted to be safe in pregnant women and in
newborn infants.135,136 Future studies are needed
to investigate the safety and efficacy of (+)-
naloxone drugs, and appropriate formulations
and administration protocols, in large animal
models relevant to human, notably sheep and
non-human primates.144 In particular, the risk of
non-specific suppression of the immune response

and its impact on maternal defence from infection
will require evaluation.

A key consideration is the response of the
neonate to in utero exposure to TLR4 inhibitors,
and their protective effect in the fetus against the
damaging actions of inflammatory mediators, and
ongoing consequences of inflammatory injury
after birth.4,19 An important consideration is the
physiological role of TLR4-mediated pathways in
normal fetal tissue maturation and any adverse
impact of pharmacologic interference with this.
Clearly, clinical progression of this work will
require extensive investigation of the benefits and
risks of pharmacological delay of preterm birth for
infants, particularly effects on neurodevelopment,
to evaluate the efficacy of interventions to reduce
inflammatory injury in utero, and ensure the
benefits outweigh the alternative strategy of
delivery and neonatal intensive care. In this
context, it is critical to appreciate the differences
between acute treatment for women in suspected
preterm labour and chronic treatment of women
to prevent onset of inflammation-associated
complications, and to design studies accordingly.
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