44,046 research outputs found
Can a profession exist without research?
Radiography combines science, technology and patient care to provide an essential role in medical diagnosis and treatment. The term ‘profession’ has existed in the Oxford English Dictionary from the 15th century and argues that a profession is an occupation where professional knowledge is applied by someone who has undertaken prolonged training and obtained a formal qualification (Oxford English Dictionary Online; 2007). For most of history, professions have based their practices on expertise derived from experience passed down in the form of tradition. Even in health care, many practices have still not been justified by evidence and as such there are areas of uncertainty.peer-reviewe
A first approach to understanding and measuring naturalness in driver-car interaction
With technology changing the nature of the driving task, qualitative methods can help designers understand and measure driver-car interaction naturalness. Fifteen drivers were interviewed at length in their own parked cars using ethnographically-inspired questions probing issues of interaction salience, expectation, feelings, desires and meanings. Thematic analysis and content analysis found five distinct components relating to 'rich physical' aspects of natural feeling interaction typified by richer physical, analogue, tactile styles of interaction and control. Further components relate to humanlike, intelligent, assistive, socially-aware 'perceived behaviours' of the car. The advantages and challenges of a naturalness-based approach are discussed and ten cognitive component constructs of driver-car naturalness are proposed. These may eventually be applied as a checklist in automotive interaction design.This research was fully funded by a research grant from Jaguar Land Rover, and partially funded by project
n.220050/F11 granted by Research Council of Norway
Quantum Information Paradox: Real or Fictitious?
One of the outstanding puzzles of theoretical physics is whether quantum
information indeed gets lost in the case of Black Hole (BH) evaporation or
accretion. Let us recall that Quantum Mechanics (QM) demands an upper limit on
the acceleration of a test particle. On the other hand, it is pointed out here
that, if a Schwarzschild BH would exist, the acceleration of the test particle
would blow up at the event horizon in violation of QM. Thus the concept of an
exact BH is in contradiction of QM and quantum gravity (QG). It is also
reminded that the mass of a BH actually appears as an INTEGRATION CONSTANT of
Einstein equations. And it has been shown that the value of this integration
constant is actually zero. Thus even classically, there cannot be finite mass
BHs though zero mass BH is allowed. It has been further shown that during
continued gravitational collapse, radiation emanating from the contracting
object gets trapped within it by the runaway gravitational field. As a
consequence, the contracting body attains a quasi-static state where outward
trapped radiation pressure gets balanced by inward gravitational pull and the
ideal classical BH state is never formed in a finite proper time. In other
words, continued gravitational collapse results in an "Eternally Collapsing
Object" which is a ball of hot plasma and which is asymptotically approaching
the true BH state with M=0 after radiating away its entire mass energy. And if
we include QM, this contraction must halt at a radius suggested by highest QM
acceleration. In any case no EH is ever formed and in reality, there is no
quantum information paradox.Comment: 8 pages in Pramana Style, 6 in Revtex styl
Squeezing out the last 1 nanometer of water: A detailed nanomechanical study
In this study, we present a detailed analysis of the squeeze-out dynamics of
nanoconfined water confined between two hydrophilic surfaces measured by
small-amplitude dynamic atomic force microscopy (AFM). Explicitly considering
the instantaneous tip-surface separation during squeezeout, we confirm the
existence of an adsorbed molecular water layer on mica and at least two
hydration layers. We also confirm the previous observation of a sharp
transition in the viscoelastic response of the nanoconfined water as the
compression rate is increased beyond a critical value (previously determined to
be about 0.8 nm/s). We find that below the critical value, the tip passes
smoothly through the molecular layers of the film, while above the critical
speed, the tip encounters "pinning" at separations where the film is able to
temporarily order. Pre-ordering of the film is accompanied by increased force
fluctuations, which lead to increased damping preceding a peak in the film
stiffness once ordering is completed. We analyze the data using both
Kelvin-Voigt and Maxwell viscoelastic models. This provides a complementary
picture of the viscoelastic response of the confined water film
Inferring effective interactions from the local density of states: application to STM data from BiSrCaCuO
While the influence of impurities on the local density of states (LDOS) in a
metal is notoriously non-local due to interference effects, low order moments
of the LDOS in general can be shown to depend only on the local structure of
the Hamiltonian. Specifically, we show that an analysis of the spatial
variations of these moments permits one to ``work backwards'' from scanning
tunneling microscopy (STM) data to infer the local structure of the underlying
effective Hamiltonian. Applying this analysis to STM data from the high
temperature superconductor, BiSrCaCuO, we find that
the variations of the electro-chemical potential are remarkably small (i.e.,
the disorder is, in a sense, weak) but that there are large variations in the
local magnitude of the d-wave gap parameter.Comment: 7 pages, 7 figure
Space shuttle contamination due to backflow from control motor exhaust
Spacecraft contamination of the space shuttle orbiter and accompanying Spacelab payloads is studied. The scattering of molecules from the vernier engines and flash evaporator nozzle after impingement on the orbiter wing surfaces, and the backflow of molecules out of the flash evaporator nozzle plume flow field due to intermolecular collisions in the plume are the problems discussed. A method was formulated for dealing with these problems, and detailed results are given
Theory of stripes in quasi two dimensional rare-earth tritellurides
Even though the rare-earth tritellurides are tetragonal materials with a
quasi two dimensional (2D) band structure, they have a "hidden" 1D character.
The resultant near-perfect nesting of the Fermi surface leads to the formation
of a charge density wave (CDW) state. We show that for this band structure,
there are two possible ordered phases: A bidirectional "checkerboard" state
would occur if the CDW transition temperature were sufficiently low, whereas a
unidirectional "striped" state, consistent with what is observed in experiment,
is favored when the transition temperature is higher. This result may also give
some insight into why, in more strongly correlated systems, such as the
cuprates and nickelates, the observed charge ordered states are generally
stripes as opposed to checkerboards.Comment: Added contents and references, changed title and figures. Accepted to
PR
Aircraft control system
An aircraft control system is described which is particularly suited to rotary wing aircraft. Longitudinal acceleration and course rate commands are derived from a manual control stick to control translational velocity of the aircraft along a flight path. In the collective channel the manual controls provide vertical velocity commands. In the yaw channel the manual controls provide sideslip or heading rate commands at high or low airspeeds, respectively. The control system permits pilots to fly along prescribed flight paths in a precise manner with relatively low work load
The Mandelstam-Leibbrandt Prescription in Light-Cone Quantized Gauge Theories
Quantization of gauge theories on characteristic surfaces and in the
light-cone gauge is discussed. Implementation of the Mandelstam-Leibbrandt
prescription for the spurious singularity is shown to require two distinct null
planes, with independent degrees of freedom initialized on each. The relation
of this theory to the usual light-cone formulation of gauge field theory, using
a single null plane, is described. A connection is established between this
formalism and a recently given operator solution to the Schwinger model in the
light-cone gauge.Comment: Revtex, 14 pages. One postscript figure (requires psfig). A brief
discussion of necessary restrictions on the light-cone current operators has
been added, and two references. Final version to appear in Z. Phys.
Probabilistic models of information retrieval based on measuring the divergence from randomness
We introduce and create a framework for deriving probabilistic models of Information Retrieval. The models are nonparametric models of IR obtained in the language model approach. We derive term-weighting models by measuring the divergence of the actual term distribution from that obtained under a random process. Among the random processes we study the binomial distribution and Bose--Einstein statistics. We define two types of term frequency normalization for tuning term weights in the document--query matching process. The first normalization assumes that documents have the same length and measures the information gain with the observed term once it has been accepted as a good descriptor of the observed document. The second normalization is related to the document length and to other statistics. These two normalization methods are applied to the basic models in succession to obtain weighting formulae. Results show that our framework produces different nonparametric models forming baseline alternatives to the standard tf-idf model
- …