37,659 research outputs found
Two blowing concepts for roll and lateral control of aircraft
Two schemes to modulate aerodynamic forces for roll and lateral control of aircraft have been investigated. The first scheme, called the lateral blowing concept, consists of thin jets of air exiting spanwise, or at small angle with the spanwise direction, from slots at the tips of straight wings. For this scheme, in addition to experimental measurements, a theory was developed showing the analytical relationship between aerodynamic forces and jet and wing parameters. Experimental results confirmed the theoretically derived scaling laws. The second scheme, which was studied experimentally, is called the jet spoiler concept and consists of thin jets exiting normally to the wing surface from slots aligned with the spanwise direction
Dynamic acoustic field activated cell separation (DAFACS)
Advances in diagnostics, cell and stem cell technologies drive the development of application-specific tools
for cell and particle separation. Acoustic micro-particle separation offers a promising avenue for highthroughput,
label-free, high recovery, cell and particle separation and isolation in regenerative medicine.
Here, we demonstrate a novel approach utilizing a dynamic acoustic field that is capable of separating an
arbitrary size range of cells. We first demonstrate the method for the separation of particles with different
diameters between 6 and 45 μm and secondly particles of different densities in a heterogeneous medium.
The dynamic acoustic field is then used to separate dorsal root ganglion cells. The shearless, label-free and
low damage characteristics make this method of manipulation particularly suited for biological applications.
Advantages of using a dynamic acoustic field for the separation of cells include its inherent safety and
biocompatibility, the possibility to operate over large distances (centimetres), high purity (ratio of particle
population, up to 100%), and high efficiency (ratio of separated particles over total number of particles to
separate, up to 100%)
Noisy Monte Carlo: Convergence of Markov chains with approximate transition kernels
Monte Carlo algorithms often aim to draw from a distribution by
simulating a Markov chain with transition kernel such that is
invariant under . However, there are many situations for which it is
impractical or impossible to draw from the transition kernel . For instance,
this is the case with massive datasets, where is it prohibitively expensive to
calculate the likelihood and is also the case for intractable likelihood models
arising from, for example, Gibbs random fields, such as those found in spatial
statistics and network analysis. A natural approach in these cases is to
replace by an approximation . Using theory from the stability of
Markov chains we explore a variety of situations where it is possible to
quantify how 'close' the chain given by the transition kernel is to
the chain given by . We apply these results to several examples from spatial
statistics and network analysis.Comment: This version: results extended to non-uniformly ergodic Markov chain
A relativistic chiral quark model for pseudoscalar emission from heavy mesons
The amplitudes for one-pion mediated transitions between heavy meson excited
states are obtained in the framework of the relativistic chiral quark model.
The effective coupling constants to pions and the decay widths of excited heavy
mesons with l<=2 for non-radially excited, and the l=0 radially excited mesons
are presented for both charmed and beauty mesons. We also discuss the allowed
decays of strange excited heavy mesons by emission of a K-meson.Comment: 20 pages, revte
Particle-scale structure in frozen colloidal suspensions from small angle X-ray scattering
During directional solidification of the solvent in a colloidal suspension, the colloidal particles segregate from the growing solid, forming high-particle-density regions with structure on a hierarchy of length scales ranging from that of the particle-scale packing to the large-scale spacing between these regions. Previous work has mostly concentrated on the medium- to large-length scale structure, as it is the most accessible and thought to be more technologically relevant. However, the packing of the colloids at the particle-scale is an important component not only in theoretical descriptions of the segregation process, but also to the utility of freeze-cast materials for new applications. Here we present the results of experiments in which we investigated this structure across a wide range of length scales using a combination of small angle X-ray scattering and direct optical imaging. As expected, during freezing the particles were concentrated into regions between ice dendrites forming a microscopic pattern of high- and low-particle-density regions. X-ray scattering indicates that the particles in the high density regions were so closely packed as to be touching. However, the arrangement of the particles does not conform to that predicted by any standard inter-particle pair potentials, suggesting that the particle packing induced by freezing differs from that formed during equilibrium or steady-state densification processes
Limitations of squeezing due to collisional decoherence in Bose-Einstein condensates
We study the limitations for entanglement due to collisional decoherence in a
Bose-Einstein condensate. Specifically we consider relative number squeezing
between photons and atoms coupled out from a homogeneous condensate. We study
the decay of excited quasiparticle modes due to collisions, in condensates of
atoms with one or two internal degrees of freedom. The time evolution of these
modes is determined in the linear response approximation to the deviation from
equilibrium. We use Heisenberg-Langevin equations to derive equations of motion
for the densities and higher correlation functions which determine the
squeezing. In this way we can show that decoherence due to quasiparticle
interactions imposes an important limit on the degree of number squeezing which
may be achieved. Our results are also relevant for the determination of
decoherence times in other experiments based on entanglement, e.g. the slowing
and stopping of light in condensed atomic gases using dark states.Comment: 16 pages RevTeX, 3 figure
Random billiards with wall temperature and associated Markov chains
By a random billiard we mean a billiard system in which the standard specular
reflection rule is replaced with a Markov transition probabilities operator P
that, at each collision of the billiard particle with the boundary of the
billiard domain, gives the probability distribution of the post-collision
velocity for a given pre-collision velocity. A random billiard with
microstructure (RBM) is a random billiard for which P is derived from a choice
of geometric/mechanical structure on the boundary of the billiard domain. RBMs
provide simple and explicit mechanical models of particle-surface interaction
that can incorporate thermal effects and permit a detailed study of
thermostatic action from the perspective of the standard theory of Markov
chains on general state spaces.
We focus on the operator P itself and how it relates to the
mechanical/geometric features of the microstructure, such as mass ratios,
curvatures, and potentials. The main results are as follows: (1) we
characterize the stationary probabilities (equilibrium states) of P and show
how standard equilibrium distributions studied in classical statistical
mechanics, such as the Maxwell-Boltzmann distribution and the Knudsen cosine
law, arise naturally as generalized invariant billiard measures; (2) we obtain
some basic functional theoretic properties of P. Under very general conditions,
we show that P is a self-adjoint operator of norm 1 on an appropriate Hilbert
space. In a simple but illustrative example, we show that P is a compact
(Hilbert-Schmidt) operator. This leads to the issue of relating the spectrum of
eigenvalues of P to the features of the microstructure;(3) we explore the
latter issue both analytically and numerically in a few representative
examples;(4) we present a general algorithm for simulating these Markov chains
based on a geometric description of the invariant volumes of classical
statistical mechanics
Roll-Yaw control at high angle of attack by forebody tangential blowing
The feasibility of using forebody tangential blowing to control the roll-yaw motion of a wind tunnel model is experimentally demonstrated. An unsteady model of the aerodynamics is developed based on the fundamental physics of the flow. Data from dynamic experiments is used to validate the aerodynamic model. A unique apparatus is designed and built that allows the wind tunnel model two degrees of freedom, roll and yaw. Dynamic experiments conducted at 45 degrees angle of attack reveal the system to be unstable. The natural motion is divergent. The aerodynamic model is incorporated into the equations of motion of the system and used for the design of closed loop control laws that make the system stable. These laws are proven through dynamic experiments in the wind tunnel using blowing as the only actuator. It is shown that asymmetric blowing is a highly non-linear effector that can be linearized by superimposing symmetric blowing. The effects of forebody tangential blowing and roll and yaw angles on the flow structure are determined through flow visualization experiments. The transient response of roll and yaw moments to a step input blowing are determined. Differences on the roll and yaw moment dependence on blowing are explained based on the physics of the phenomena
Phenomenological Study of Strong Decays of Heavy Hadrons in Heavy Quark Effective Theory
The application of the tensor formalism of the heavy quark effective theory
(HQET) at leading order to strong decays of heavy hadrons is presented.
Comparisons between experimental and theoretical predictions of ratios of decay
rates for B mesons, D mesons and kaons are given. The application of HQET to
strange mesons presents some encouraging results. The spin-flavor symmetry is
used to predict some decay rates that have not yet been measured.Comment: 10 page
Microscopic Dynamics in a Strongly Interacting Bose-Einstein Condensate
An initially stable 85Rb Bose-Einstein condensate (BEC) was subjected to a
carefully controlled magnetic field pulse in the vicinity of a Feshbach
resonance. This pulse probed the strongly interacting regime for the
condensate, with calculated values for the diluteness parameter (na^3) ranging
from 0.01 to 0.5. The field pulse was observed to cause loss of atoms from the
condensate on remarkably short time scales (>=10 microsec). The dependence of
this loss on magnetic field pulse shape and amplitude was measured. For
triangular pulses shorter than 1 ms, decreasing the pulse length actually
increased the loss, until extremely short time scales (a few tens of
microseconds) were reached. Such time scales and dependencies are very
different from those expected in traditional condensate inelastic loss
processes, suggesting the presence of new microscopic BEC physics.Comment: 4 pages in latex2E, 4 eps figures; revised Fig.1, revised
scatt.lengths, added discussion, new refs., resubmitted to PR
- …