39,446 research outputs found
Mapping human serum induced gene networks as a basis for the creation of biomimetic periosteum for bone repair
The periosteum is a highly vascularised, collagen-rich tissue that plays a crucial role in directing bone repair. This is orchestrated primarily by its resident progenitor cell population. Indeed, preservation of periosteum integrity is critical for bone healing. Cells extracted from the periosteum retain their osteochondrogenic properties and as such are a promising basis for tissue engineering strategies for the repair of bone defects. However, the culture expansion conditions, and the way in which the cells are reintroduced to the defect site are critical aspects of successful translation. Indeed, expansion in human serum and implantation on biomimetic materials has previously been shown to improve in vivo bone formation. As such, this study aimed to develop a protocol to allow for the expansion of human periosteum derived cells (hPDCs) in a biomimetic periosteal-like environment. The expansion conditions were defined through the investigation of the bioactive cues involved in augmenting hPDC proliferative and multipotency characteristics, based on transcriptomic analysis of cells cultured in human serum. Master regulators of transcriptional networks were identified and an optimised periosteal derived-growth factor cocktail (PD-GFC; containing β-Estradiol, FGF2, TNFα, TGFβ, IGF-1 and PDGF-BB) was generated. Expansion of hPDCs in PD-GFC resulted in serum mimicry with regards to the cell morphology, proliferative capacity and chondrogenic differentiation. When incorporated into a 3D collagen-type-1 matrix and cultured in PD-GFC, the hPDCs migrated to the surface that represented the matrix topography of the periosteum cambium layer. Furthermore, gene expression analysis revealed a downregulated Wnt and TGFβ signature and an upregulation of CREB, which may indicate the hPDCs are recreating their progenitor cell signature. This study highlights the first stage in the development of a biomimetic periosteum which may have applications in bone repair
Is There Only One Solution of the Dyson-Schwinger Equation for Quark Propagator in the Case of Non-zero Current Quark Mass
In this letter it is shown on general ground that there exist two
qualitatively distinct solutions of the Dyson-Schwinger equation for the quark
propagator in the case of non-zero current quark mass. One solution corresponds
to the ``Nambu-Goldstone'' phase and the other one corresponds to the
``Wigner'' phase in the chiral limit.Comment: 7 page
Transport of magnetic field by a turbulent flow of liquid sodium
We study the effect of a turbulent flow of liquid sodium generated in the von
K\'arm\'an geometry, on the localized field of a magnet placed close to the
frontier of the flow. We observe that the field can be transported by the flow
on distances larger than its integral length scale. In the most turbulent
configurations, the mean value of the field advected at large distance
vanishes. However, the rms value of the fluctuations increases linearly with
the magnetic Reynolds number. The advected field is strongly intermittent.Comment: 4 pages, 6 figure
Flaring Activity of Sgr A* at 43 and 22 GHz: Evidence for Expanding Hot Plasma
We have carried out Very Large Array (VLA) continuum observations to study
the variability of Sgr A* at 43 GHz (=7mm) and 22 GHz
(=13mm). A low level of flare activity has been detected with a
duration of 2 hours at these frequencies, showing the peak flare
emission at 43 GHz leading the 22 GHz peak flare by to 40 minutes. The
overall characteristics of the flare emission are interpreted in terms of the
plasmon model of Van der Laan (1966) by considering the ejection and
adiabatically expansion of a uniform, spherical plasma blob due to flare
activity. The observed peak of the flare emission with a spectral index
of =1.6 is consistent with the prediction that the peak
emission shifts toward lower frequencies in an adiabatically-expanding
self-absorbed source. We present the expected synchrotron light curves for an
expanding blob as well as the peak frequency emission as a function of the
energy spectral index constrained by the available flaring measurements in
near-IR, sub-millimeter, millimeter and radio wavelengths. We note that the
blob model is consistent with the available measurements, however, we can not
rule out the jet of Sgr A*. If expanding material leaves the gravitational
potential of Sgr A*, the total mass-loss rate of nonthermal and thermal
particles is estimated to be M yr. We
discuss the implication of the mass-loss rate since this value matches closely
with the estimated accretion rate based on polarization measurements.Comment: Revised with new Figures 1 and 2, 17 pages, 4 figures, ApJ (in press
Ground state representations of loop algebras
Let g be a simple Lie algebra, Lg be the loop algebra of g. Fixing a point in
S^1 and identifying the real line with the punctured circle, we consider the
subalgebra Sg of Lg of rapidly decreasing elements on R. We classify the
translation-invariant 2-cocycles on Sg. We show that the ground state
representation of Sg is unique for each cocycle. These ground states correspond
precisely to the vacuum representations of Lg.Comment: 22 pages, no figur
Calculation of the Chiral Lagrangian Coefficients
We present a systematic way to combine the global color model and the
instanton liquid model to calculate the chiral
Lagrangian coefficients. Our numerical results are in agreement well with the
experimental values.Comment: 7 pages, To appear in Chin.Phys.Lett, Year 200
Discovery of the Optical Counterparts to Four Energetic Fermi Millisecond Pulsars
In the last few years, over 43 millisecond radio pulsars have been discovered
by targeted searches of unidentified gamma-ray sources found by the Fermi
Gamma-Ray Space Telescope. A large fraction of these millisecond pulsars are in
compact binaries with low-mass companions. These systems often show eclipses of
the pulsar signal and are commonly known as black widows and redbacks because
the pulsar is gradually destroying its companion. In this paper, we report on
the optical discovery of four strongly irradiated millisecond pulsar
companions. All four sources show modulations of their color and luminosity at
the known orbital periods from radio timing. Light curve modelling of our
exploratory data shows that the equilibrium temperature reached on the
companion's dayside with respect to their nightside is consistent with about
10-30% of the available spin-down energy from the pulsar being reprocessed to
increase the companion's dayside temperature. This value compares well with the
range observed in other irradiated pulsar binaries and offers insights about
the energetics of the pulsar wind and the production of gamma-ray emission. In
addition, this provides a simple way of estimating the brightness of irradiated
pulsar companions given the pulsar spin-down luminosity. Our analysis also
suggests that two of the four new irradiated pulsar companions are only
partially filling their Roche lobe. Some of these sources are relatively bright
and represent good targets for spectroscopic follow-up. These measurements
could enable, among other things, mass determination of the neutron stars in
these systems.Comment: 11 pages, 5 tables, 1 figure, 4 online tables. ApJ submitted and
referee
Dynamics and thermodynamics of axisymmetric flows: I. Theory
We develop new variational principles to study stability and equilibrium of
axisymmetric flows. We show that there is an infinite number of steady state
solutions. We show that these steady states maximize a (non-universal)
-function. We derive relaxation equations which can be used as numerical
algorithm to construct stable stationary solutions of axisymmetric flows. In a
second part, we develop a thermodynamical approach to the equilibrium states at
some fixed coarse-grained scale. We show that the resulting distribution can be
divided in a universal part coming from the conservation of robust invariants
and one non-universal determined by the initial conditions through the fragile
invariants (for freely evolving systems) or by a prior distribution encoding
non-ideal effects such as viscosity, small-scale forcing and dissipation (for
forced systems). Finally, we derive a parameterization of inviscid mixing to
describe the dynamics of the system at the coarse-grained scale
Increased accuracy of ligand sensing by receptor internalization
Many types of cells can sense external ligand concentrations with
cell-surface receptors at extremely high accuracy. Interestingly, ligand-bound
receptors are often internalized, a process also known as receptor-mediated
endocytosis. While internalization is involved in a vast number of important
functions for the life of a cell, it was recently also suggested to increase
the accuracy of sensing ligand as the overcounting of the same ligand molecules
is reduced. Here we show, by extending simple ligand-receptor models to
out-of-equilibrium thermodynamics, that internalization increases the accuracy
with which cells can measure ligand concentrations in the external environment.
Comparison with experimental rates of real receptors demonstrates that our
model has indeed biological significance.Comment: 9 pages, 4 figures, accepted for publication in Physical Review
- …