3,831 research outputs found

    Metastable States in High Order Short-Range Spin Glasses

    Full text link
    The mean number of metastable states in higher order short-range spin glasses is estimated analytically using a variational method introduced by Tanaka and Edwards for very large coordination numbers. For lattices with small connectivities, numerical simulations do not show any significant dependence on the relative positions of the interacting spins on the lattice, indicating thus that these systems can be described by a few macroscopic parameters. As an extremely anisotropic model we consider the low autocorrelated binary spin model and we show through numerical simulations that its landscape has an exceptionally large number of local optima

    Identifying a new intermediate polar using \u3cem\u3eXMM-Newton\u3c/em\u3e and \u3cem\u3eINTEGRAL\u3c/em\u3e

    Get PDF
    The bright X-ray source 2XMMi J180438.7-145647 is fortunate to have long baseline observations in INTEGRAL that complement observations taken by other missions. Optical spectroscopy of this object has suggested a distance of ˜7 kpc and an identification with a low-mass X-ray binary. We instead use the X-ray data from 0.3 to 40 keV to identify the source as a bright intermediate polar (IP) with an estimate for the white dwarf mass of ˜0.60 M⊙. This identification is supported by the presence of an iron triplet, the component lines of which are some of the strongest seen in IPs, and the signature of the spin period of the white dwarf at ˜24 min. We note that the lack of broad-band variability may suggest that this object is a stream-fed IP, similar in many respects to the well-studied IP, V2400 Oph. Phase binning has allowed us to create spectra corresponding to the peaks and troughs of the light curve from which we determine that the spectra appear harder in the troughs, consistent with the behaviour of other IPs binned on their spin periods. This work strongly suggests a misidentification in the optical due to the presence of large columns of enshrouding material. We instead propose a distance to the source of \u3c2.5 kpc to be consistent with the luminosities of other IPs in the dim, hard state. The considerable flux of the source together with the strength of the iron lines may, in future, allow the source to be used to diagnose the properties of the shock-heated plasma and the reflected component of the emission

    Work restructuring and changing craft identity: the Tale of the Disaffected Weavers (or what happens when the rug is pulled from under your feet)

    Get PDF
    This article explores the changes in worker identity that can occur during manufacturing restructuring – specifically those linked to the declining status of craft work – through an in-depth case study of Weaveco, a UK carpet manufacturer. An analysis of changes in the labour process is followed by employee reactions centred on the demise of the traditional craft identity of male carpet weavers. The voices of the weavers dramatize the tensions involved in reconstructing their masculine identity, and we consider the implications this has for understanding gendered work relations

    The π\pi, K+K^+, and K0K^0 electromagnetic form factors

    Full text link
    The rainbow truncation of the quark Dyson-Schwinger equation is combined with the ladder Bethe-Salpeter equation for the meson amplitudes and the dressed quark-photon vertex in a self-consistent Poincar\'e-invariant study of the pion and kaon electromagnetic form factors in impulse approximation. We demonstrate explicitly that the current is conserved in this approach and that the obtained results are independent of the momentum partitioning in the Bethe-Salpeter amplitudes. With model gluon parameters previously fixed by the condensate, the pion mass and decay constant, and the kaon mass, the charge radii and spacelike form factors are found to be in good agreement with the experimental data.Comment: 8 pages, 6 figures, Revte

    Auger transition from orbitally degenerate systems: Effects of screening and multielectron excitations

    Get PDF
    We calculate Auger spectra given by the two-hole Green's function from orbitally degenerate Hubbard-like models as a function of correlation strength and band filling. The resulting spectra are qualitatively different from those obtained from fully-filled singly degenerate models due to the presence of screening dynamics and multielectron excitations. Application to a real system shows remarkable agreement with experimental results leading to reinterpretation of spectral features.Comment: To appear in Phy. Rev. Let

    Accountability and responsibility: 'Rogue' school leaders and the induction of new teachers in England

    Get PDF
    This paper considers the professional responsibility of schools in England to provide effective induction practices in the context of a central government mandated policy. It looks at individual schools as ‘habitats’ for induction and the role of school leaders and LEAs as facilitators or inhibitors. Notions of professional responsibility and public accountability are used to analyse the small number of ‘rogue’ school leaders who, within the new legislative framework, treat new teachers unprofessionally and waste public resources. A typology of ‘rogue’ schools that are in some way deviant in transgressing induction requirements is developed and the various sanctions that can be deployed against such schools are examined. How LEAs handle their monitoring and accountability role and manage deviant schools is considered. Finally, suggestions are made for improvements, such as the need to clarify professional responsibility and refine systems of professional accountability

    X-ray Bursts from the Transient Magnetar Candidate XTE J1810-197

    Full text link
    We have discovered four X-ray bursts, recorded with the Rossi X-ray Timing Explorer Proportional Counter Array between 2003 September and 2004 April, that we show to originate from the transient magnetar candidate XTE J1810-197. The burst morphologies consist of a short spike or multiple spikes lasting ~1 s each followed by extended tails of emission where the pulsed flux from XTE J1810-197 is significantly higher. The burst spikes are likely correlated with the pulse maxima, having a chance probability of a random phase distribution of 0.4%. The burst spectra are best fit to a blackbody with temperatures 4-8 keV, considerably harder than the persistent X-ray emission. During the X-ray tails following these bursts, the temperature rapidly cools as the flux declines, maintaining a constant emitting radius after the initial burst peak. During the brightest X-ray tail, we detect a narrow emission line at 12.6 keV with an equivalent width of 1.4 keV and a probability of chance occurrence less than 4 x 10^-6. The temporal and spectral characteristics of these bursts closely resemble the bursts seen from 1E 1048.1-5937 and a subset of the bursts detected from 1E 2259+586, thus establishing XTE J1810-197 as a magnetar candidate. The bursts detected from these three objects are sufficiently similar to one another, yet significantly different from those seen from soft gamma repeaters, that they likely represent a new class of bursts from magnetar candidates exclusive (thus far) to the anomalous X-ray pulsar-like sources.Comment: Accepted for publication in ApJ. 26 pages and 11 figure

    Modeling galactic halos with predominantly quintessential matter

    Get PDF
    This paper discusses a new model for galactic dark matter by combining an anisotropic pressure field corresponding to normal matter and a quintessence dark energy field having a characteristic parameter ωq\omega_q such that 1<ωq<13-1<\omega_q< -\frac{1}{3}. Stable stellar orbits together with an attractive gravity exist only if ωq\omega_q is extremely close to 13-\frac{1}{3}, a result consistent with the special case studied by Guzman et al. (2003). Less exceptional forms of quintessence dark energy do not yield the desired stable orbits and are therefore unsuitable for modeling dark matter.Comment: 12 pages, 1 figur
    corecore