450 research outputs found

    DendriMacs. Well-defined dendritically branched polymers synthesized by an iterative convergent strategy involving the coupling reaction of AB₂ macromonomers

    Get PDF
    We describe here the first example of an iterative convergent strategy for the synthesis of dendritically branched polymers involving condensation coupling reactions of AB2 macromonomers. The macromonomers were synthesized by living anionic polymerization, initiated with 3-tert-butyldimethylsiloxy-1-propyllithium and end capped with 1,1-bis(4-tert-butyldimethylsiloxyphenyl) ethylene. Following a deprotection reaction, the macromonomer, functionalized with two phenol groups and one primary alcohol group, can be built up into a dendritic structure by a series of Williamson coupling reactions and subsequent end group modification reactions. Since the dendritic structures are built up from macromonomers we have coined the term "DendriMac" to describe these branched polymers. In this paper, we will discuss the synthesis of the macromonomer, the iterative reaction sequence and merits of a convergent strategy. Some preliminary characterization data will also be reported

    Time-reversal violating rotation of polarization plane of light in gas placed in electric field

    Get PDF
    Rotation of polarization plane of light in gas placed in electric field is considered. Different factors causing this phenomenon are investigated. Angle of polarization plane rotation for transition 6S_{1/2} - 7S_{1/2} in cesium (lambda=539 nm) is estimated. The possibility to observe this effect experimentally is discussed.Comment: 10 pages, Late

    A Measurement of Time-Averaged Aerosol Optical Depth using Air-Showers Observed in Stereo by HiRes

    Full text link
    Air fluorescence measurements of cosmic ray energy must be corrected for attenuation of the atmosphere. In this paper we show that the air-showers themselves can yield a measurement of the aerosol attenuation in terms of optical depth, time-averaged over extended periods. Although the technique lacks statistical power to make the critical hourly measurements that only specialized active instruments can achieve, we note the technique does not depend on absolute calibration of the detector hardware, and requires no additional equipment beyond the fluorescence detectors that observe the air showers. This paper describes the technique, and presents results based on analysis of 1258 air-showers observed in stereo by the High Resolution Fly's Eye over a four year span.Comment: 7 pages, 3 figures, accepted for publication by Astroparticle Physics Journa

    Non-linear numerical simulations of magneto-acoustic wave propagation in small-scale flux tubes

    Full text link
    We present results of non-linear, 2D, numerical simulations of magneto-acoustic wave propagation in the photosphere and chromosphere of small-scale flux tubes with internal structure. Waves with realistic periods of three to five minutes are studied, after applying horizontal and vertical oscillatory perturbations to the equilibrium model. Spurious reflections of shock waves from the upper boundary are minimized thanks to a special boundary condition. This has allowed us to increase the duration of the simulations and to make it long enough to perform a statistical analysis of oscillations. The simulations show that deep horizontal motions of the flux tube generate a slow (magnetic) mode and a surface mode. These modes are efficiently transformed into a slow (acoustic) mode in the vA < cS atmosphere. The slow (acoustic) mode propagates vertically along the field lines, forms shocks and remains always within the flux tube. It might deposit effectively the energy of the driver into the chromosphere. When the driver oscillates with a high frequency, above the cut-off, non-linear wave propagation occurs with the same dominant driver period at all heights. At low frequencies, below the cut-off, the dominant period of oscillations changes with height from that of the driver in the photosphere to its first harmonic (half period) in the chromosphere. Depending on the period and on the type of the driver, different shock patterns are observed.Comment: 22 pages 6 color figures, submitted to Solar Physics, proceeding of SOHO 19/ GONG 2007 meeting, Melbourne, Australi

    Search for Global Dipole Enhancements in the HiRes-I Monocular Data above 10^{18.5} eV

    Full text link
    Several proposed source models for Ultra-High Energy Cosmic Rays (UHECRs) consist of dipole distributions oriented towards major astrophysical landmarks such as the galactic center, M87, or Centaurus A. We use a comparison between real data and simulated data to show that the HiRes-I monocular data for energies above 10^{18.5} eV is, in fact, consistent with an isotropic source model. We then explore methods to quantify our sensitivity to dipole source models oriented towards the Galactic Center, M87, and Centaurus A.Comment: 17 pages, 31 figure

    News from the Muon (g-2) Experiment at BNL

    Get PDF
    The magnetic moment anomaly a_mu = (g_mu - 2) / 2 of the positive muon has been measured at the Brookhaven Alternating Gradient Synchrotron with an uncertainty of 0.7 ppm. The new result, based on data taken in 2000, agrees well with previous measurements. Standard Model evaluations currently differ from the experimental result by 1.6 to 3.0 standard deviations.Comment: Talk presented at RADCOR - Loops and Legs 2002, Kloster Banz, Germany, September 8-13 2002, to be published in Nuclear Physics B (Proc. Suppl.); 5 pages, 3 figure

    Discovering the Microbial Enzymes Driving Drug Toxicity with Activity-Based Protein Profiling

    Get PDF
    It is increasingly clear that interindividual variability in human gut microbial composition contributes to differential drug responses. For example, gastrointestinal (GI) toxicity is not observed in all patients treated with the anticancer drug irinotecan, and it has been suggested that this variability is a result of differences in the types and levels of gut bacterial β-glucuronidases (GUS). GUS enzymes promote drug toxicity by hydrolyzing the inactive drug-glucuronide conjugate back to the active drug, which damages the GI epithelium. Proteomics-based identification of the exact GUS enzymes responsible for drug reactivation from the complexity of the human microbiota has not been accomplished, however. Here, we discover the specific bacterial GUS enzymes that generate SN-38, the active and toxic metabolite of irinotecan, from human fecal samples using a unique activity-based protein profiling (ABPP) platform. We identify and quantify gut bacterial GUS enzymes from human feces with an ABPP-enabled proteomics pipeline and then integrate this information with ex vivo kinetics to pinpoint the specific GUS enzymes responsible for SN-38 reactivation. Furthermore, the same approach also reveals the molecular basis for differential gut bacterial GUS inhibition observed between human fecal samples. Taken together, this work provides an unprecedented technical and bioinformatics pipeline to discover the microbial enzymes responsible for specific reactions from the complexity of human feces. Identifying such microbial enzymes may lead to precision biomarkers and novel drug targets to advance the promise of personalized medicine.Bio-organic SynthesisMedical Biochemistr
    corecore