3,732 research outputs found

    Hidden structural heterogeneity enhances marine hotspots’ biodiversity

    Get PDF
    Studies in terrestrial and shallow-water ecosystems have unravelled the key role of interspecific interactions in enhancing biodiversity, but important knowledge gaps persist for the deep sea. Cold-water coral reefs are hotspots of biodiversity, but the role of interspecific interactions and “habitat cascades” (i.e. positive effects on focal organisms mediated by biogenic habitat formation) in shaping their biodiversity is unknown. Associations between macrofaunal hosts and epifauna were examined in 47 stations at the Mingulay Reef Complex (northeast Atlantic). In total, 101 (group level) and 340 (species level) unique types of facultative associations formed by 43 hosts and 39 epifaunal species were found. Molluscs and empty polychaete tubes had higher values for the type and number of host-epifaunal associations, the Shannon–Wiener (H) and Margalef (d) indices of the epifauna than the rest of the taxonomic groups (p < 0.05). Hosts’ body size, orientation, surface smoothness, and growth form explained a significant amount of variability (32.96%) in epifauna community composition. Epifaunal species richness (S), H and d were 27.4 (± 2.2%), 56.2 (± 2.8%) and 39.9 (± 2.3%) of the respective values for the total sessile communities living on coral framework. This is intriguing as coral framework is orders of magnitude larger than the size of macrofaunal hosts. It is suggested that bivalves, tunicates and empty polychaete tubes increase habitat heterogeneity and enhance biodiversity through “habitat cascades”, in a similar way that epiphytes do in tropical rainforests. Most macrofaunal habitat suppliers in the studied cold-water coral reef are calcified species and likely susceptible to ocean acidification. This indicates that the impacts of climate change on the total biodiversity, structure and health of cold-water coral reefs may potentially be more severe than previously thought

    Ecohydrodynamics of Cold-Water Coral Reefs:A Case Study of the Mingulay Reef Complex (Western Scotland)

    Get PDF
    Ecohydrodynamics investigates the hydrodynamic constraints on ecosystems across different temporal and spatial scales. Ecohydrodynamics play a pivotal role in the structure and functioning of marine ecosystems, however the lack of integrated complex flow models for deep-water ecosystems beyond the coastal zone prevents further synthesis in these settings. We present a hydrodynamic model for one of Earth's most biologically diverse deep-water ecosystems, cold-water coral reefs. The Mingulay Reef Complex (western Scotland) is an inshore seascape of cold-water coral reefs formed by the scleractinian coral Lophelia pertusa. We applied single-image edge detection and composite front maps using satellite remote sensing, to detect oceanographic fronts and peaks of chlorophyll a values that likely affect food supply to corals and other suspension-feeding fauna. We also present a high resolution 3D ocean model to incorporate salient aspects of the regional and local oceanography. Model validation using in situ current speed, direction and sea elevation data confirmed the model's realistic representation of spatial and temporal aspects of circulation at the reef complex including a tidally driven current regime, eddies, and downwelling phenomena. This novel combination of 3D hydrodynamic modelling and remote sensing in deep-water ecosystems improves our understanding of the temporal and spatial scales of ecological processes occurring in marine systems. The modelled information has been integrated into a 3D GIS, providing a user interface for visualization and interrogation of results that allows wider ecological application of the model and that can provide valuable input for marine biodiversity and conservation applications

    Prospectus, February 2, 1977

    Get PDF
    APATHY REIGNS: FOUR SEEK SIX POSTS IN FRIDAY\u27S ELECTION; PC news in brief: Intramurals volleyball, First Aid cards are in, Calendar errs, Voter registration info given; \u27Referendum crucial\u27: PC faces deficit: Neal; Producer Rick Orr visits PC this week; Editorial: Activity fees found discriminatory; Letters to the editor: Party thanks, Lots of Money; Staff editorial: Check \u27no\u27 no 1040\u27s; Forums set for spring; Parkland divided on amnesty question; Nettnin is VA coordinator, replacing Joe O\u27Daniel; New anti-crime group offers reward; Snowed over but not snowed in!; PC student starts Tel-a-quest; Lacking in days: February has the groundhog; \u27Beads\u27 is featured by Somedancers; Referendum polling places listed; 226 treated before end of month: PC Dental Clinic offers Head Start for teeth of local children; 2 new listings: Music Courses offered; Violinist Fried plays at Krannert; VA interprets changes; Somedancers Inconcert at Paxton, Saturday; Practicum new for art students this semester; Classifieds; Cobras defeat Danville; \u27Good\u27 moves into first place; Men\u27s Intramural Basketball Schedule; Kankakee game canceled: Women cagers undefeated so far; Co-Rec Volleyball Tuesdays; \u27Good competition\u27: Indoor track meets at UI; Kathy Kaler named to All-American teamhttps://spark.parkland.edu/prospectus_1977/1029/thumbnail.jp

    Improving predictive mapping of deep-water habitats

    Get PDF
    In the deep sea, biological data are often sparse; hence models capturing relationships between observed fauna and environmental variables (acquired via acoustic mapping techniques) are often used to produce full coverage species assemblage maps. Many statistical modelling techniques are being developed, but there remains a need to determine the most appropriate mapping techniques. Predictive habitat modelling approaches (redundancy analysis, maximum entropy and random forest) were applied to a heterogeneous section of seabed on Rockall Bank, NE Atlantic, for which landscape indices describing the spatial arrangement of habitat patches were calculated. The predictive maps were based on remotely operated vehicle (ROV) imagery transects, high-resolution autonomous underwater vehicle (AUV) sidescan backscatter maps and ship-based multibeam bathymetry. Area under the curve (AUC) and accuracy indicated similar performances for the three models tested, but performance varied by species assemblage, with the transitional species assemblage showing the weakest predictive performances. Spatial predictions of habitat suitability differed between statistical approaches, but niche similarity metrics showed redundancy analysis and random forest predictions to be most similar. As one statistical technique could not be found to outperform the others when all assemblages were considered, ensemble mapping techniques, where the outputs of many models are combined, were applied. They showed higher accuracy than any single model. Different statistical approaches for predictive habitat modelling possess varied strengths and weaknesses and by examining the outputs of a range of modelling techniques and their differences, more robust predictions, with better described variation and areas of uncertainties, can be achieved. As improvements to prediction outputs can be achieved without additional costly data collection, ensemble mapping approaches have clear value for spatial management
    corecore