7 research outputs found
Mycobacterium tuberculosis SIT42 Infection in an Abused Dog in Southern Italy
A case of Mycobacterium tuberculosis infection is described in a dead adult male dog in Southern Italy. The carcass was found by the Health Authority in a gypsy encampment. It was admitted to our forensic veterinary medicine unit, with a suspicion of cruelty to the animal. Necropsy showed beating and traumatism signs, and mistreating was confirmed. Gross lesions included multiple nodular hepatic lesions, hemorrhagic enteritis with enlarged mesenteric lymph nodes, body cavity effusions, and an adrenal neoplasm. Bacteriological and molecular analyses were carried out on the liver lesions that enabled to identify M. tuberculosis SIT42 (LAM9). Drug-resistance patterns were evaluated by screening mutations on the rpoB and katG genes that showed susceptibility to both rifampin and isoniazid, respectively. Very few studies report canine tuberculosis, and little is known about the disease in Italy. To the authors' knowledge, this is the first report of Mycobacterium tuberculosis SIT42 infection in a dog in Italy
Whole-Genome Sequencing-Based Characterization of a Listeria monocytogenes Strain from an Aborted Water Buffalo in Southern Italy
Listeria monocytogenes is a Gram-positive pathogen causing life-threatening infections both in humans and animals. In livestock farms, it can persist for a long time and primarily causes uterine infections and encephalitis in farmed animals. Whole genome sequencing (WGS) is currently becoming the best method for molecular typing of this pathogen due to its high discriminatory power and efficiency of characterization. This study describes the WGS-based characterization of an L. monocytogenes strain from an aborted water buffalo fetus in southern Italy. The strain under study was classified as molecular serogroup IVb, phylogenetic lineage I, MLST sequence type 6, Clonal Complex 6, and cgMLST type CT3331, sublineage 6. Molecular analysis indicated the presence of 61 virulence genes and 4 antibiotic resistance genes. Phylogenetic analysis, including all the publicly available European L. monocytogenes serogroup IVb isolates, indicated that our strain clusterized with all the other CC6 strains and that different CCs were variably distributed within countries and isolation sources. This study contributes to the current understanding of the genetic diversity of L. monocytogenes from animal sources and highlights how the WGS strategy can provide insights into the pathogenic potential of this microorganism, acting as an important tool for epidemiological studies
Human cardiac mesoangioblasts isolated from hypertrophic cardiomyopathies are greatly reduced in proliferation and differentiation potency
AIMS: Our objective was to test whether progenitor cell proliferation and differentiation potential may vary depending upon the disease of the donor. METHODS AND RESULTS: Human cardiac mesoangioblasts were isolated from cardiac muscle biopsies of patients undergoing open heart surgery for correction of mitral regurgitation following an acute myocardial infarction (MR-MI) or correction of mitral and aortic regurgitation with ensuing left ventricular hypertrophy (MAR-LVH). The cells express surface markers and cardiac genes similar to mouse cardiac mesoangioblasts; they have limited self-renewing and clonogenic activity and are committed mainly to cardiogenesis. Although cardiac differentiation can be induced by 5-azacytidine or by co-culture with rat neonatal cardiomyocytes, human cells do not contract spontaneously like their mouse counterparts. When locally injected in the infarcted myocardium of immunodeficient mice, cardiac mesoangioblasts generate a chimeric heart that contains human myocytes and some capillaries; likewise, they colonize chick embryo hearts when transplanted in ovo. At variance with cells from patients with MR-MI, when isolation was performed on biopsies from MAR-LVH, cells could be isolated in much lower numbers, proliferated less extensively and failed to differentiate. CONCLUSION: Cardiac mesoangioblasts are present in the human heart but this endogenous progenitor population is progressively exhausted, possibly by continuous and inefficient regeneration attempts
Human cardiac mesoangioblasts isolated from hypertrophic cardiomyopathies are greatly reduced in proliferation and differentiation potency
AIMS: Our objective was to test whether progenitor cell proliferation and differentiation potential may vary depending upon the disease of the donor. METHODS AND RESULTS: Human cardiac mesoangioblasts were isolated from cardiac muscle biopsies of patients undergoing open heart surgery for correction of mitral regurgitation following an acute myocardial infarction (MR-MI) or correction of mitral and aortic regurgitation with ensuing left ventricular hypertrophy (MAR-LVH). The cells express surface markers and cardiac genes similar to mouse cardiac mesoangioblasts; they have limited self-renewing and clonogenic activity and are committed mainly to cardiogenesis. Although cardiac differentiation can be induced by 5-azacytidine or by co-culture with rat neonatal cardiomyocytes, human cells do not contract spontaneously like their mouse counterparts. When locally injected in the infarcted myocardium of immunodeficient mice, cardiac mesoangioblasts generate a chimeric heart that contains human myocytes and some capillaries; likewise, they colonize chick embryo hearts when transplanted in ovo. At variance with cells from patients with MR-MI, when isolation was performed on biopsies from MAR-LVH, cells could be isolated in much lower numbers, proliferated less extensively and failed to differentiate. CONCLUSION: Cardiac mesoangioblasts are present in the human heart but this endogenous progenitor population is progressively exhausted, possibly by continuous and inefficient regeneration attempts.status: publishe
Sodium–Glucose Cotransporter 2 Inhibitors in Patients with Diabetes and Coronary Artery Disease: Translating the Benefits of the Molecular Mechanisms of Gliflozins into Clinical Practice
Sodium-glucose cotransporter 2 inhibitors (SGLT2i) were initially developed for the treatment of diabetes due to their antihyperglycemic activity. However, in the light of the most recent clinical studies, they are revolutionizing the approach to cardiovascular disease in patients with and without diabetes. We aimed to generate real-world data about the use of SGLT2i in patients with T2DM and coronary artery disease (CAD), focusing on their effectiveness in glycemic control, adherence, long-term efficacy, and safety outcomes. On the basis of the inclusion and exclusion criteria, 143 patients were enrolled. Patients were treated with canagliflozin (n = 33 patients; 23%), dapagliflozin (n = 52 patients, 36.4%), empagliflozin (n = 48 patients; 33.6%), or ertugliflozin (n = 10 patients; 7%) as monotherapy or in combination with other antidiabetic drugs. All patients performed a clinical visit, and their medical history, blood sampling, and anthropometric parameters were measured at discharge and at 1-year follow-up. The reduction in HbA1c % value at 12 months was significant (8.2 vs. 7.4; p p < 0.0001), as did the reduction in abdominal adiposity (expressed via waist circumference). At 1-year follow-up, 74.1% of patients were adherent to the treatment, and 81.1% were persistent to the treatment. A total of 27 patients (18.8%) had to discontinue treatment early due to drug intolerance caused by genitourinary infections (11.9%), the drub being permanently ineffective (HbA1c not at target or decreasing: 4.9%), or because of expressing. a desire not to continue (2%). No major drug-related adverse events (diabetic ketoacidosis, Fournier’s gangrene, lower-limb amputations) occurred at follow-up, while MACE events occurred in 14 patients (9.8%). In real-world patients with T2DM and CAD, SGLT2i have been effective in long-term glycemic control and the improvement in anthropometric indices with good tolerance, high adherence, persistence to treatment, and no major adverse events at 1-year follow-up
Abnormalities in biomarkers of mineral and bone metabolism in kidney donors
Previous studies have suggested that kidney donors may have abnormalities of mineral and bone metabolism typically seen in chronic kidney disease. This may have important implications for the skeletal health of living kidney donors and for our understanding of the pathogenesis of long term mineral and bone disorders in chronic kidney disease. In this prospective study, 182 of 203 kidney donors and 173 of 201 paired normal controls had markers of mineral and bone metabolism measured before and at 6 and 36 months after donation (ALTOLD Study). Donors had significantly higher serum concentrations of intact parathyroid hormone (24.6% and 19.5%) and fibroblast growth factor-23 (9.5% and 8.4%) at 6 and 36 months, respectively, as compared to healthy controls, and significantly reduced tubular phosphate reabsorption (−7.0% and −5.0%) and serum phosphate concentrations (−6.4% and −2.3%). Serum 1,25-dihydroxyvitamin D(3) concentrations were significantly lower (−17.1% and −12.6%), while 25-hydroxyvitamin D (21.4% and 19.4%,) concentrations were significantly higher in donors compared to controls. Moreover, significantly higher concentrations of the bone resorption markers, carboxyterminal cross-linking telopeptide of bone collagen (30.1% and 13.8%) and aminoterminal cross-linking telopeptide of bone collagen (14.2% and 13.0%), and the bone formation markers, osteocalcin (26.3% and 2.7%), and procollagen type I N-terminal propetide (24.3% and 8.9%) were observed in donors. Thus, kidney donation alters serum markers of bone metabolism that could reflect impaired bone health. Additional long term studies that include assessment of skeletal architecture and integrity are warranted in kidney donors