7 research outputs found

    EANM procedural guidelines for myocardial perfusion scintigraphy using cardiac-centered gamma cameras

    Get PDF
    Abstract An increasing number of Nuclear Medicine sites in Europe are using cardiac-centered gamma cameras for myocardial perfusion scintigraphy (MPS). Three cardiac-centered gamma cameras are currently the most frequently used in Europe: the D-SPECT (Spectrum Dynamics), the Alcyone (Discovery NM 530c and Discovery NM/CT 570c; General Electric Medical Systems), and the IQ-SPECT (Siemens Healthcare). The increased myocardial count sensitivity of these three cardiac-centered systems has allowed for a decrease in the activities of radiopharmaceuticals injected to patients for myocardial perfusion imaging and, consequently, radiation exposure of patients. When setting up protocols for MPS, the overall objective should be to maintain high diagnostic accuracy of MPS, while injecting the lowest activities reasonably achievable to reduce the level of radiation exposure of patient and staff. These guidelines aim at providing recommendations for acquisition protocols and image interpretation using cardiac-centered cameras. As each imaging system has specific design and features for image acquisition and analysis, these guidelines have been separated into three sections for each gamma camera system. These recommendations have been written by the members of the Cardiovascular Committee of EANM and were based on their own experience with each of these systems and on the existing literature

    Nuclear medicine in the assessment and prevention of cancer therapy-related cardiotoxicity: prospects and proposal of use by the European Association of Nuclear Medicine (EANM)

    Get PDF
    Cardiotoxicity may present as (pulmonary) hypertension, acute and chronic coronary syndromes, venous thromboembolism, cardiomyopathies/heart failure, arrhythmia, valvular heart disease, peripheral arterial disease, and myocarditis. Many of these disease entities can be diagnosed by established cardiovascular diagnostic pathways. Nuclear medicine, however, has proven promising in the diagnosis of cardiomyopathies/heart failure, and peri- and myocarditis as well as arterial inflammation. This article first outlines the spectrum of cardiotoxic cancer therapies and the potential side effects. This will be complemented by the definition of cardiotoxicity using non-nuclear cardiovascular imaging (echocardiography, CMR) and biomarkers. Available nuclear imaging techniques are then presented and specific suggestions are made for their application and potential role in the diagnosis of cardiotoxicity

    Position paper of the Cardiovascular Committee of the European Association of Nuclear Medicine (EANM) on PET imaging of atherosclerosis

    Get PDF
    Cardiovascular diseases are the leading cause of death not only in Europe but also in the rest of the World. Preventive measures, however, often fail and cardiovascular disease may manifest as an acute coronary syndrome, stroke or even sudden death after years of silent progression. Thus, there is a considerable need for innovative diagnostic and therapeutic approaches to improve the quality of care and limit the burden of cardiovascular diseases. During the past 10 years, several retrospective and prospective clinical studies have been published using F-18-fluorodeoxyglucose (FDG) positron emission tomography (PET) to quantify inflammation in atherosclerotic plaques. However, the current variety of imaging protocols used for vascular (arterial) imaging with FDG PET considerably limits the ability to compare results between studies and to build large multicentre imaging registries. Based on the existing literature and the experience of the Members of the European Association of Nuclear Medicine (EANM) Cardiovascular Committee, the objective of this position paper was to propose optimized and standardized protocols for imaging and interpretation of PET scans in atherosclerosis. These recommendations do not, however, replace the individual responsibility of healthcare professionals to make appropriate decisions in the circumstances of the individual study protocols used and the individual patient, in consultation with the patient and, where appropriate and necessary, the patient's guardian or carer. These recommendations suffer from the absence of conclusive evidence on many of the recommendations. Therefore, they are not intended and should not be used as "strict guidelines" but should, as already mentioned, provide a basis for standardized clinical atherosclerosis PET imaging protocols, which are subject to further and continuing evaluation and improvement. However, this EANM position paper might indeed be a first step towards "official" guidelines on atherosclerosis imaging with PET
    corecore