21,027 research outputs found

    Quantitative isoperimetric inequalities for log-convex probability measures on the line

    Full text link
    The purpose of this paper is to analyze the isoperimetric inequality for symmetric log-convex probability measures on the line. Using geometric arguments we first re-prove that extremal sets in the isoperimetric inequality are intervals or complement of intervals (a result due to Bobkov and Houdr\'e). Then we give a quantitative form of the isoperimetric inequality, leading to a somehow anomalous behavior. Indeed, it could be that a set is very close to be optimal, in the sense that the isoperimetric inequality is almost an equality, but at the same time is very far (in the sense of the symmetric difference between sets) to any extremal sets! From the results on sets we derive quantitative functional inequalities of weak Cheeger type

    Exploring the bulk of tidal charged micro-black holes

    Full text link
    We study the bulk corresponding to tidal charged brane-world black holes. We employ a propagating algorithm which makes use of the three-dimensional multipole expansion and analytically yields the metric elements as functions of the five-dimensional coordinates and of the ADM mass, tidal charge and brane tension. Since the projected brane equations cannot determine how the charge depends on the mass, our main purpose is to select the combinations of these parameters for which black holes of microscopic size possess a regular bulk. Our results could in particular be relevant for a better understanding of TeV-scale black holes.Comment: Latex, 15 pages, 1 table, 5 figures; Section 3.2 extended, typos corrected, no change in conclusion

    Incomplete markets with no Hart points

    Get PDF
    We provide a geometric test of whether a general equilibrium incomplete markets (GEI) economy has Hart points---points at which the rank of the securities payoff matrix drops. Condition (H) says that, at each nonterminal node, there is an affine set (of appropriate dimension) that intersects all of a well-specified set of convex polyhedra. If the economy has Hart points, then Condition (H) is satisfied; consequently, if condition (H) fails, the economy has no Hart points. The shapes of the convex polyhedra are determined by the number of physical goods and the dividends of the securities, but are independent of the endowments and preferences of the agents. Condition (H) fails, and thus there are no Hart points, in interesting classes of economies with only short-lived securities, including economies obtained by discretizing an economy with a continuum of states and sufficiently diverse payoffs.Incomplete Markets, GEI model, Hart points

    The q-gradient method for global optimization

    Full text link
    The q-gradient is an extension of the classical gradient vector based on the concept of Jackson's derivative. Here we introduce a preliminary version of the q-gradient method for unconstrained global optimization. The main idea behind our approach is the use of the negative of the q-gradient of the objective function as the search direction. In this sense, the method here proposed is a generalization of the well-known steepest descent method. The use of Jackson's derivative has shown to be an effective mechanism for escaping from local minima. The q-gradient method is complemented with strategies to generate the parameter q and to compute the step length in a way that the search process gradually shifts from global in the beginning to almost local search in the end. For testing this new approach, we considered six commonly used test functions and compared our results with three Genetic Algorithms (GAs) considered effective in optimizing multidimensional unimodal and multimodal functions. For the multimodal test functions, the q-gradient method outperformed the GAs, reaching the minimum with a better accuracy and with less function evaluations.Comment: 12 pages, 1 figur

    Quantum Dissipation in a Neutrino System Propagating in Vacuum and in Matter

    Get PDF
    Considering the neutrino state like an open quantum system, we analyze its propagation in vacuum or in matter. After defining what can be called decoherence and relaxation effects, we show that in general the probabilities in vacuum and in constant matter can be written in a similar way, which is not an obvious result in this approach. From this result, we analyze the situation where neutrinos evolution satisfies the adiabatic limit and use this formalim to study solar neutrinos. We show that the decoherence effect may not be bounded by the solar neutrino data and review some results in the literature. We discuss the current results where solar neutrinos were used to put bounds on decoherence effects through a model-dependent approach. We conclude explaining how and why this models are not general and we reinterpret these constraints.Comment: new version: title was changend and was added a table. To appear at Nucl. Physic.

    Odor-driven attractor dynamics in the antennal lobe allow for simple and rapid olfactory pattern classification

    Get PDF
    The antennal lobe plays a central role for odor processing in insects, as demonstrated by electrophysiological and imaging experiments. Here we analyze the detailed temporal evolution of glomerular activity patterns in the antennal lobe of honeybees. We represent these spatiotemporal patterns as trajectories in a multidimensional space, where each dimension accounts for the activity of one glomerulus. Our data show that the trajectories reach odor-specific steady states (attractors) that correspond to stable activity patterns at about 1 second after stimulus onset. As revealed by a detailed mathematical investigation, the trajectories are characterized by different phases: response onset, steady-state plateau, response offset, and periods of spontaneous activity. An analysis based on support-vector machines quantifies the odor specificity of the attractors and the optimal time needed for odor discrimination. The results support the hypothesis of a spatial olfactory code in the antennal lobe and suggest a perceptron-like readout mechanism that is biologically implemented in a downstream network, such as the mushroom body
    corecore