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Abstract

Considering the neutrino state like an open quantum system, we analyze its propagation in vacuum or 
in matter. After defining what can be called decoherence and relaxation effects, we show that in general 
the probabilities in vacuum and in constant matter can be written in a similar way, which is not an obvious 
result for such system. From this result, we analyze the situation where neutrino evolution satisfies the 
adiabatic limit and use this formalism to study solar neutrinos. We show that the decoherence effect may 
not be bounded by the solar neutrino data and review some results in the literature, in particular the current 
results where solar neutrinos were used to put bounds on decoherence effects through a model-dependent 
approach. We conclude explaining how and why these models are not general and we reinterpret these 
constraints.
© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

We present a study on dissipative effects on neutrino evolution, such as the decoherence and 
relaxation effects, and their consequences in neutrino oscillations. These effects are obtained 
when we consider neutrinos as an open quantum system [1–3]. In this approach, neutrinos are 
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considered as a subsystem that is free to interact with the environment that presents a reservoir 
behavior.1

The decoherence effect is the most usual dissipative effect. In the neutrino oscillation phe-
nomenon, the decoherence effect acts only on the quantum interference, dynamically eliminating 
the oscillating terms in oscillation probabilities. This feature has been investigated in a number 
of previous studies [7–14].

The relaxation effect acts in a different way and it does not affect the oscillating terms. It 
changes only the pure mixing terms in the probabilities, leading all averaged conversion prob-
abilities to 1/n, where n is the number of neutrino families. Then, the relaxation effect can 
change the probability behavior even when the oscillation terms are not important, like the solar 
neutrino case [3]. The relaxation effect can be confused with the decoherence effect and this can 
occur in those particular cases where quantum coherence is averaged out in neutrino oscillations. 
In Ref. [11], the authors analyzed quantum decoherence effect with solar and KamLAND neu-
trinos. However, for solar neutrinos the decoherence effect could be investigated only using a 
model-dependent approach, because in general, the quantum coherence is averaged out for solar 
neutrinos and just relaxation effects can be investigated.

There are some experimental bounds on dissipative effects and we will compare some con-
crete bounds obtained from some experimental data analyses found in the literature. All these 
limits were obtained for neutrino propagation in vacuum and in two neutrino approximation. For 
example, in Ref. [14], the analysis was made considering MINOS experiment. There, the deco-
herence parameter has a superior limit given by γ < 9.11 × 10−23 GeV at 95% C.L. and this 
result agrees with the upper limit found in Ref. [8] where γ < 4.10 × 10−23 GeV at 95% C.L., 
which was obtained for atmospheric neutrino case.

A very interesting upper limit was introduced by Ref. [11] obtained in a model-dependent ap-
proach that constrain decoherence effect using solar neutrinos. It was obtained that decoherence 
parameter is limited to γ < 0.64 × 10−24 GeV at 95% C.L. As it is known, the matter effect is 
important in this case, and we will address this issue later on this article. In [16] an analysis using 
only reactor neutrinos found different bounds on the decoherence effect, γ < 6.8 × 10−22 eV at 
95% at C.L. All bounds presented above can be found in Table 1.2

In general, bounds on dissipative parameters come from e−γ x � 1 since this is the kind of 
damping terms which appear in the oscillation probabilities. This can be checked to work rea-
sonably well for all the limits presented above, with terrestrial experiments with a typical baseline 
x = 1020 ∼ 1022 GeV−1 (20 ∼ 2000 km).

However for the numbers presented in [11], using the bound found for γ < 0.64 ×10−24 GeV, 
the exponential term tends strongly to 1. As it will be clear in this work, the model-dependent 
approach used in Ref. [11] also constrains the relaxation effect with γrelax. < 10−25 GeV at 95%
C.L. For solar-neutrinos x = 1026 GeV−1, and the exponential term in this case makes the sur-

1 Some possible sources of violations of quantum mechanics fundamentals include the spontaneous evolution of pure 
states into mixed decoherent states [4] induced by interactions with the space–time at Planck scale [5] which unavoidly 
appear in any formulation of a quantum gravity theory. Such sources of decoherence was first analyzed in Ref. [6] which 
considered oscillating systems propagating over large distances and the corresponding damping effects in the usual 
interferometric pattern characterizing the oscillation phenomenon.

2 Following the arguments of the present article, decoherence effect can be described by one parameter and relaxation 
effect by another parameter. However, in the case of three neutrino oscillation there are three different decoherence 
parameters and two different relaxation parameters. As we can see in Ref. [15], the decoherence parameters describe the 
quantum effect between specific families and then, the decoherence bound for accelerator or atmospheric neutrinos can 
be different from the one for reactor neutrinos.
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Table 1
Upper limits on decoherence parameters at 95% C.L. obtained from accelerator, 
atmospheric, reactor and solar experiments, respectively. These bounds assume 
that the decoherence parameters are energy independent.

P(νανα) γ in GeV Baseline/E

P(νμνμ) 9.11 × 10−23 [14] ∼730 km/3 GeV
P(νμνμ) 4.10 × 10−23 [8] �104 km/103 GeV
P(ν̄eν̄e) 6.8 × 10−22 [16] ∼200 km/5 MeV
P(νeνe) 0.64 × 10−24 [11] ∼108 km/2 MeV

vival probability for solar neutrinos to have a unique constant value equal to 1/2. This result 
should spoil the usual solution for solar neutrinos. In our model, the constraint for γ is expected 
to be two order of magnitude smaller [17].

In the particular case investigated in Ref. [11], where this limit was obtained in a model-
dependent approach, the exponential argument depends on other oscillation parameters, includ-
ing necessarily the neutrino energy, and this makes the bound on γ just suitable in that situation.

In the model-independent approach that we will introduce in this work, the damping term 
will not depend on any oscillation parameters and the addition of any energy dependence on γ
will be an ansatz, as those found in Refs. [8,11,14]. Besides, in our model the damping term 
for solar neutrino does not describe the decoherence effect, but only the relaxation effect. In 
fact, following the definitions that we will present in this work, the bound found in Ref. [11]
can be called of decoherence just because it is proportional to the relaxation effect, which is, in 
fact, the only dissipative effect that remains after averaging out the solar-neutrino oscillations. 
Furthermore, our model respects the usual bound condition (e−xγ � 1) for the damping terms in 
the neutrino probabilities.

Our analysis will consider these two non-standard effects. We analyze the propagation in vac-
uum and in matter. We show that with a careful application of the open quantum system theory 
it is possible to write the probabilities in vacuum and in constant matter in a similar way, which 
is not an obvious result in this context. From this result, we analyze the situation where neutrino 
evolution satisfies the adiabatic limit, and analyze solar neutrinos in two neutrino approximation 
to show that the decoherence effect cannot be bounded in general using this neutrino source [19]. 
We discuss the current results [11,18] where solar neutrinos were used to put limits on decoher-
ence effect through a model-dependent approach. We argue how and why these models are not 
general and we reinterpret these constraints.

We conclude this work arguing that the decoherence limit in the channel νe → νμ can be 
different from the limit obtained in Ref. [11]. A limit for decoherence parameters can be obtained 
using a model-independent approach studying neutrinos from sources other than the sun.

2. Neutrinos as an open quantum system

In open quantum system approach, a global state formed by a subsystem of interest and an 
environment must be defined. As the environment in this approach is a quantum reservoir, it 
interacts with the subsystem of interest as a whole.

The subsystem of interest can be represented by S states which are associated with the Hilbert 
space HS , while the quantum reservoir can be represented by R states which are associated with 
the Hilbert space HR . Basically, those are the fundamental definition about these two different 
quantum states. The subsystem of interest may be composed by more than one Hilbert space 
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associated with each element that can be added in the usual quantum description of a system. 
For instance, when the matter potential is added to mass Hamiltonian in neutrino oscillation in 
vacuum.

The product tensor from these spaces form the total Hilbert space or the global states space, 
HG =HS ⊗HR . This means that we can write a global state as [20,21]

ρG = ρS ⊗ ωR , (1)

where ρS is the subsystem of interest state, and ωR is the reservoir state. The system evolution is 
obtained using the following transformation:

ρG(t) = U(ρS ⊗ ωR)U†, (2)

such that U = Exp[−iHtott] is the unitary operator and the time evolution is governed by the 
total Hamiltonian that can be defined as Htot = HS + HR + Hint, where HS is the subsystem of 
interest Hamiltonian, HR is the reservoir Hamiltonian and Hint is the interaction Hamiltonian 
between reservoir and subsystem of interest.

The subsystem of interest changes its characteristic in time due to the internal dynamic and the 
interaction with the reservoir [20,21]. On the other hand, as that reservoir state does not change 
in time, its dynamics is not important. Then, the dynamic of the subsystem of interest is obtained 
taking the trace over the reservoir states in Eq. (2) [22–25], i.e.,

ρS(0) → ρs(t) = �ρs(0) = T rRU(ρS ⊗ ωR)U†, (3)

where � is a dynamic map. Eq. (3) is known as the reduced dynamic of S. Solving the partial 
trace in Eq. (3), we can rewrite this relation as

�ρS(0) =
∑
α

WαρSW †
α , (4)

where Wα ∈ HS and 
∑

α WαW †
α = 1 [25]. In order to evolve the state, this map must satisfy the 

complete positivity constraint. Besides, we need a family of linear maps which must satisfy the 
semigroup properties [22,23,25]. From this, we can obtain a dynamical generator, which can be 
written as

dρν(t)

dt
= −i[HS,ρν(t)] + D[ρν(t)] . (5)

This equation has been studied in literature and more information about it and its properties 
can be found in Refs. [20–27]. This equation is called Lindblad Master Equation and it is com-
posed by an usual Hamiltonian term and a non-Hamiltonian one which gives origin to dissipative 
effects. The dissipator in Eq. (5) can be defined as

D[ρν] = 1

2

N2−1∑
k=1

([
Vk,ρνV

†
k

]
+

[
Vkρν,V

†
k

])
, (6)

where Vk are dissipative operators which act only on the N -dimensional HS space. The trace 
preservation of ρν occurs only if 

∑
k V

†
k Vk = 1 is satisfied. The Vk operators arise from the in-

teraction of the subsystem of interest with the environment. The propagation through equation 
(5) leads an initial density matrix state into a new density matrix state [1]. The evolution is com-
plete positive, transforming pure states into mixed states due to dissipation effects [20,22–25]. 
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The Von Neumann entropy of the subsystem of interest, S = −T r[ρνlnρν], must be increasing 
in time and this is guaranteed if we impose V †

k = Vk [28].
Let us start considering only two neutrino families and the relation between the mass and 

flavor bases in vacuum is given by [29,30]

ρm = U†ρf U , (7)

where ρm is written in mass basis, ρf is written in flavor basis and U is the usual 2 × 2 unitary 
mixing matrix.

The transformation in Eq. (7) can be used to write the Eq. (5) in the flavor basis or any other 
basis. Since any unitary transformation over Vk , i.e., AVkA

† with AA† = 1, leads to a new matrix 
of the form:

V ′
k = AVkA

† = A

(
V11 V12

V ∗
12 V22

)
A† =

(
V ′

11 V ′
12

V ′ ∗
12 V ′

22

)
, (8)

where the new dissipator can be reparametrized such that it has the same form of the old dissipa-
tion operator.

Expanding Eqs. (5) and (6) in SU(2) basis matrices we can write Eq. (5) as:

d

dx
ρμ(x)σμ = 2εijkHiρj (x)σμδμk + Dμνρν(x)σμ , (9)

with Dμ0 = D0ν = 0 to keep the probability conservation. The matrix Dmn can be parametrized 
as

Dmn = −
⎛
⎝ γ1 α β

α γ2 δ

β δ γ3

⎞
⎠ , (10)

where the complete positivity constrains each parameter in the following form

2R ≡ γ1 + γ2 − γ3 ≥ 0; RS − α2 ≥ 0;
2S ≡ γ1 + γ3 − γ2 ≥ 0; RT − β2 ≥ 0;
2T ≡ γ2 + γ3 − γ1 ≥ 0; ST − δ2 ≥ 0 ;

RST ≥ 2αβδ + T δ2 + Sβ2 + Rα2 . (11)

When we take out the reservoir Hamiltonian, HR , and the interaction Hamiltonian, Hint, the 
quantum evolution return to usual way and then the Eq. (5), which is just the known Liouville 
quantum equation.

2.1. The subsystem of interest

Our subsystem of interest will be the neutrinos. As it is well known, many experiments give 
evidence that neutrinos have mass and mixing, as defined in Eq. (7), such that flavors oscillation 
can occur [29,30].

Neutrinos propagate in vacuum or in matter. In both situations it is possible to evolve neu-
trinos as an open quantum system, through direct application of the Eqs. (5) and (6). However, 
it is important to take into account in which circumstances these equations were developed and 
how the subsystem of interest was defined. Then, the definition of neutrinos like a subsystem of 
interest can change in each case.
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We can use a previous knowledge of the Hamiltonian in standard quantum mechanics to de-
fine this general subsystem of interest S. As we have seen, the total Hamiltonian in open quantum 
system approach can be defined as Htot = HS + HR + Hint. In this case, HS is the usual Hamil-
tonian in closed approach. Then, the more general subsystem of interest is the physical object 
described by basis in which HS is diagonal.

2.2. Quantum dissipator and the effects in S

It is possible to study how each entry in the matrix in Eq. (10) changes the neutrino probabili-
ties [3]. For simplicity we will work with only two models for quantum dissipator. One with only 
one new parameter that will describes decoherence effect and another with two new different 
parameters that will describe decoherence and relaxation effects.

The most usual dissipator is obtained imposing energy conservation on the subsystem of inter-
est S. This constraint satisfies the following commutation relation: [HS, Vk] = 0. This dissipator 
adds only decoherence to the system of interest S and it is given by

Dmn = −diag{γ1, γ1,0} (12)

where, in this case γ1 = γ2 and all other parameters vanish. This statement defines uniquely a 
particular interaction between the subsystem of interest S and the reservoir.

Therefore, the energy conservation constraint in subsystem of interest S is obtained only if the 
commutation relation [HS, Vk] = 0 is satisfied and the consequence is a quantum dissipator with 
only one parameter, γ1, that describes decoherence effect. In other words, the dynamic evolution 
is purely decoherent when this specific constraint is applied and no other dissipative effect is 
present.

To include the relaxation effect we need to violate the above constraint. As the subsystem of 
interest is free to interact with the reservoir the energy flux can fluctuate and the energy con-
servation condition imposed over the subsystem of interest can be not satisfied. In this case, the 
matrix in Eq. (10) can assume its complete form. However, as the matrix in Eq. (10) needs to be 
positive, all off-diagonal parameters must be smaller than the diagonal parameters. Then, only 
the diagonal parameter necessarily must be present in case of new physics. For simplicity, we 
will disregard all off-diagonal elements.

By assuming [HS, Vk] 
= 0, a non-null D33 parameter can be included in the dissipator in 
Eq. (12) and then a new quantum dissipator can be written as

Dmn = −diag{γ1, γ1, γ3} , (13)

where γ1 continues describing the decoherence effect and γ3 describes the relaxation effect.

2.3. Dissipation in other specific subsystem of interest S’

The quantum dissipator written in Eq. (6) can be defined in many different ways for neutrinos 
propagating in vacuum or in constant matter density, but it can have the same form in both cases. 
It is easy to prove this statement since we can always write HS in Eq. (2) as being diagonal in 
vacuum or in matter propagation. However, the parameter values in operator Vk are different in 
each case.

In the presence of matter the transformation between the effective mass basis and flavor basis 
can be written changing ρm → ρ̃m and U → Ũ , where Ũ is composed by effective mixing angles 
[30,29]. This transformation may not bring anything new to the quantum evolution equation in 
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(5) and it can be again parametrized as we made in Eq. (9) with a D̃mn that has the same form of 
the Dmn that was given by Eq. (10).

In the usual situation in matter propagation we can define HS = Hosc + Hmat and then, the in-
teraction constraints between a specific subsystem of interest S′ and the reservoir can be imposed 
in different ways. Thus, it is possible to define a specific subsystem of interest S′ that can have a 
commutation relation with a particular Vk . While, the HS defines the more general subsystem of 
interest S, the Hosc or Hmat could be used to define other specific subsystems of interest S’.

If we assume, for instance, that [Hosc, Vk] = 0, the energy conservation is kept when the prop-
agation is in vacuum and only decoherence can act during the propagation. However, to the same 
case, when the propagation is in the matter HS 
= Hosc and therefore this constraint no longer 
preserve the energy conservation in the subsystem of interest S and we have the situation where 
[HS, Vk] 
= 0. Thus, the relaxation and decoherence effects may act during the propagation.

Therefore, when one defines HS and its relation with the Vk operators, all the dissipative ef-
fects are determined. So, a consequence of the definition of the subsystem of interest S from 
HS can be summarized as follow: if the subsystem of interest S has its energy conserved then 
[HS, Vk] = 0 and the dissipator has the form of Eq. (12). In this case we are dealing with deco-
herence effects. If it is not, then [HS, Vk] 
= 0 and the dissipator can be written in its more general 
form, Eq. (13). Thus, there are both decoherence and relaxation effects taking place during neu-
trino evolution.

The difference between decoherence and relaxation effect was discussed in this section. Now, 
we will apply this formalism in neutrino oscillation in vacuum and in constant matter case in 
order to eliminate any confusion between these two dissipative effects.

3. Propagation in vacuum and in constant matter density

With the Lindblad Master Equation we can study many dissipative effects in neutrino oscil-
lations. Decoherence is the most usual dissipative effect [11,7,10,9,8,12,13,31], but it is not the 
only one, as we have seen in previous section. In particular, we are going to study how deco-
herence and relaxation effects act on the state during its propagation and how these dissipative 
effects change the oscillation probabilities.

In general, we can calculate the evolution using the dissipator in Eq. (13). We can obtain the 
evolution using the dissipator given in Eq. (12) just setting γ3 = 0. The oscillation Hamiltonian in 
vacuum and in matter is taken in its diagonal form. Usually in vacuum HS is written in the mass 
basis as HS = diag{E1, E2} and when the oscillation occurs in constant matter, it is possible 
to write the Hamiltonian as HS = diag{Ẽ1, Ẽ2} using the effective mass basis. Note that we 
have defined two different subsystems of interest S, one for neutrinos in vacuum and another for 
neutrinos in constant matter, but both HS are diagonal.

We are going to use the approximation Ei = E + mi/2E and Ẽi = E + m̃i/2E. The Eq. (9)
can be written as⎛

⎝ ρ̇1(x)

ρ̇2(x)

ρ̇3(x)

⎞
⎠ =

⎛
⎝ −γ1 −� 0

� −γ1 0
0 0 −γ3

⎞
⎠

⎛
⎝ ρ1(x)

ρ2(x)

ρ3(x)

⎞
⎠ , (14)

where � = �m2/2E. If the propagation is in matter, we can evoke the effective quantities, which 
are � → �̃ = �m̃2/2E, γi → γ̃i by following the Eq. (8) and ρi → ρ̃i . Of course, this changes 
nothing from the point of view of the equation solution and from now on, we do not mention more 
this similarity. Further, the component ρ0 has a trivial differential equation given by ρ̇0(x) = 0



M.M. Guzzo et al. / Nuclear Physics B 908 (2016) 408–422 415
and its solution is ρ0(x) = ρ0(0) that in two neutrino oscillation means ρ0(x) = 1/2. The Eq. (14)
can be written in short form as

Ṙ(t) = HR(t) , (15)

where the eigenvalues of H are λ0 = −γ3, λ1 = −γ1 − i� and λ2 = −γ1 + i�. For each eigen-
value it is possible to obtain a correspondent eigenvector, u0, u1, u2 that compose the matrix 
A = [u0, u1, u2] that diagonalizes the matrix H by performing the following similarity transfor-
mation: A†

HA. The solution of the Eq. (15) is given by

R(x) =M(x)R(0) , (16)

where M(x) is obtained making

M(x) =A.diag{eλ0x, eλ1x, eλ2x}.A† . (17)

Furthermore, it is useful to write the propagated state which in this case is given by

ρ(x) =
(

ρ0(x) + ρ3(x) ρ1(x) − iρ2(x)

ρ1(x) + iρ2(x) ρ0(x) − ρ3(x)

)
. (18)

From the Eq. (14), one can see that the propagated state is written as

ρ(x) =
(

1
2 + 1

2e−γ3x cos 2θ 1
2e−(γ1−i�)x sin 2θ

1
2e−(γ1+i�)x sin 2θ 1

2 − 1
2e−γ3x cos 2θ

)
, (19)

where it is possible to identify two unusual behaviors. The off-diagonal entries are called co-
herence elements and it has a damping term that eliminates the quantum coherence during the 
propagation. This is the exact definition for decoherence effect and we can see clearly that such 
effect is associated with the matrix elements γ1. The diagonal elements in Eq. (19) are known as 
population elements and they are related to the quantum probabilities of obtaining the eigenvalue 
E1 or E2 of the observable HS .

In the absence of dissipative effects, the observable is diagonal in the mass basis and the 
diagonal elements of the state are independent of the distance, but in the state in Eq. (19) the 
probability elements change with the propagation. This dissipative effect implies that the neutri-
nos may change their flavor without using the oscillation mechanism. As the asymptotic state is 
a complete mixing, the γ3 in diagonal elements is called relaxation effect.

The flavor oscillation probabilities can be obtained from the Eq. (7) and ρf

11 element is the 
survival probability that is written as

Pνα→να = 1

2

[
1 + e−γ3x cos2 2θ + e−γ1x sin2 2θ cos (�x)

]
. (20)

In Eq. (20), the asymptotic probability, x → ∞, goes to a maximal statistical mixing, 
Pνα→να = 1/2, and this happens for any mixing angle. Thus, by means of this approach, the 
neutrino may change its flavor and it does not need to use the oscillatory mechanism to this 
end [1,3]. In fact, while the decoherence effect, through γ1 parameter, eliminates the oscillation 
term, the relaxation effect, γ3 parameter, eliminates the term in the probability that depends only 
on the mixings.

When the propagation is performed with the dissipator given in Eq. (12), we obtain some 
important differences. In this case, H has only two non-trivial eigenvalues which are equal to λ1
and λ2 which were derivated before. Then, the matrix M(x) is changed to
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M(x) =A.diag{1, eλ1x, eλ2x}.A† , (21)

and consequently, the state is written as

ρ(x) =
(

1
2 + 1

2 cos2 θ 1
2e−(γ1−i�)x sin 2θ

1
2e−(γ1+i�)x sin 2θ 1

2 − 1
2 cos2 θ

)
. (22)

In the state above, there is only influence of the decoherence effect and only the coherent 
elements are eliminated during the propagation. In this case, the survival oscillation probability 
is written as

Pνα→να = 1 − 1

2
sin2(2θ)

[
1 − e−γ1x cos(�x)

]
. (23)

This probability was discussed in Refs. [1,3,8] only in the vacuum approach, but we are show-
ing that when the open quantum system approach is applied carefully a similar probability is 
obtained for the propagation in matter as well.

Then, when there is energy conservation in subsystem of interest, [HS, Vk] = 0, the asymp-
totic probability, x → ∞, still depends on the mixing angle as

Pνα→να = 1 − 1

2
sin2(2θ) . (24)

In this approach, the dynamics is made through Eq. (2) and it depends on how the subsystem 
of interest interacts with the environment following constraint: [HS, Vk] = 0 or [HS, Vk] 
= 0.

From a mathematical point of view, when we consider neutrinos like an open quantum system 
and taking into account the considerations explored in this section, one can see that there are 
not significant differences in deriving the quantum evolution in vacuum or in constant matter. 
This result is trivial in closed approach, but it is not a trivial result in this open approach. In fact, 
the similarity between these two propagation conditions in open approach is only true when the 
reservoir interacts in some way with the subsystem of interest represented by S that here, it was 
defined using mass state in vacuum propagation or effective mass state in matter propagation. 
Otherwise, there will not be similarities between the vacuum and matter propagation [2,11].

4. Neutrinos in non-uniform matter

In many situations the neutrino propagation occurs where the matter density is not constant. 
We are going to assume neutrino evolution in non-constant matter only in situations where the 
adiabatic limit is valid [30,29]. Thus, the results obtained in this situation are similar to those ob-
tained for propagation in constant matter. The main focus now is to understand which dissipative 
effects act on neutrinos supposing that the source is far away from the Earth. Solar neutrinos are 
a great example that we want to study.

Using the same point of view from the previous section, we can write a diagonal Hamiltonian 
using the effective mass basis. We start with the quantum dissipator written in Eq. (13). Thus, we 
have to solve the same evolution equation given in Eq. (14), but on the right side, the elements 
of the first matrix are distance dependent as well. So, the Eq. (15) is written now as

Ṙ(x) =H(x)R(x) , (25)

and it has a solution similar to Eq. (16), but M(x) is proportional to

M(x) ∝ diag{e
∫ R

r λ0(x)dx, e

∫ R

r λ1(x)dx, e

∫ R

r λ2(x)dx} , (26)
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where r and R
 are the creation and detection point, respectively. As A is defined in the same 
way of the previous section, the λi(x) has the same form of λi defined in Eq. (15), but here 
� → �̃(x) and γi → γ̃i may depend on distance. Even for λ0 the distance dependence may 
exist [11].

Notice that the energy conservation is given by [HS, Vk] = 0, but in general the HS in vacuum 
propagation is different from HS in matter propagation. Consequently, when one imposes energy 
conservation in matter propagation there is not energy conservation in vacuum propagation and 
vice-versa. On the other hand, it is possible to obtain a model where the energy conservation is 
always kept even when HS in vacuum and in matter propagation are different. In this case, the 
dissipative quantum operator has a distance dependence such that Vk changes to Vk(x) and can 
be written as

Vk = Vk(x) =
(

2
√

γ1 cos[�(x)] √
γ1 sin[�(x)]√

γ1 sin[�(x)] 0

)
, (27)

where �(x) = 2(θ − θ̃ (x)) and the effective angle is given by

θ̃ (x) = 1

2
arcsin

⎛
⎝

√
�2 sin2[2θ ]

(� cos[2θ ] − A(x))2 + �2 sin2[2θ ]

⎞
⎠ . (28)

The off-diagonal elements in vacuum case are null and the element {Vk(x)}11 = 2
√

γ1 such 
that the quantum dissipator in Eq. (12) is not changed. Supposing the adiabatic limit or constant 
density matter, we can rewrite the evolution in mass basis into effective mass basis where one 
considers the addition of the potential matter. In this case, the dissipation operator Vk(x) in 
vacuum changes to Ṽk(x) = Ũ†UVkU

†Ũ in matter propagation, such that it is written as

Ṽk(x) =
(

2
√

γ1 cos2[�(x)] 0
0 −2

√
γ1 sin2[�(x)]

)
, (29)

and the dissipator in Eq. (12) continues unchanged as well.
Thus, disregarding models where the operator in Eq. (27) differs by a unitary matrix, this 

is a unique model where energy conservation constraint in matter propagation and in vacuum 
propagation are satisfied simultaneously. This occurs due to the fact that energy conservation 
in matter propagation is given by [H̃S(x), Ṽk(x)] = 0, and this result is valid for any choice of 
matter potential.

So, as we can mentioned before, if we want that the evolution is purely decoherent, i.e., that 
the energy conservation, [H̃S(x), Ṽk(x)] = 0, is satisfied during the propagation even when the 
density matter varies, we must have a dissipation operator like the one in Eq. (27), because it 
takes into account how much the matter effect could change it.

Returning to the evolution given by Eq. (25), the state evolved using Eq. (25) is written as

ρ̃m(x) =
(

1
2 + 1

2e−� cos 2θ̃ 1
2e−�1 sin 2θ̃

1
2e−�∗

1 sin 2θ̃ 1
2 − 1

2e−� cos 2θ̃

)
, (30)

where we have defined

� = −
R
∫

γ̃3(x)dx (31)
r
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and

�1 = −
R
∫
r

γ̃1(x)dx + i

R
∫
r

�̃(x)dx , (32)

where γ̃1(x) = γ1 if we consider the dissipation operator in Eq. (27).
In general, the second term in Eq. (32) gives rise to fast oscillation terms in the off-diagonal 

elements and it is usually averaged out. Thus, the state has the following form

ρ̃m(x) =
(

1
2 + 1

2e−� cos 2θ̃ 0

0 1
2 − 1

2e−� cos 2θ̃

)
, (33)

where, we conclude that in general we cannot have information about the decoherence effect in 
this situation.

To obtain the usual adiabatic probability we use the fact that the effective mixing angle 
changes during the neutrino propagation and then, the mixing angle in the detection point must 
be different. We define the initial mass state from the Eq. (7), where in the creation point, we 
used the effective mixing angles written as θ̃ . Then, we can change the representation by apply-
ing another mixing matrix with another mixing angle. Defining these angles in detection point 
as θ̃d , we have

ρf (x) = Udρ̃m(x)U
†
d , (34)

where Ud is the usual mixing matrix, but with mixing angle θ̃d . Then, the adiabatic survival 
probability, ρf

11(x), is given by

P adiab.
νe→νe = 1

2
+ 1

2
e−� cos 2θ̃ cos 2θ̃d . (35)

In the survival probability above, if � = 0, we recover the usual survival probability in the 
adiabatic limit case [30,29]. The dissipation operator in Eq. (27) is obtained when the energy 
constraint, [HS, Vk] = 0 is imposed and hence only decoherence effect might be described by γ̃1
using the operator in Eq. (12). However, the state more general for solar neutrinos does not hold 
the γ̃1 in its description and then, we can conclude that quantum decoherence cannot be limited 
by solar neutrinos in general. On the other hand, as only γ̃3 remains in the state (33) and in the 
probability (35), in general, just the relaxation effect can be limited when one considers solar 
neutrinos

Now we analyze a situation mentioned in the subsection 2.3 that is, for example, the same 
supposition that the authors in Ref. [11] used to put limit on decoherence effect using solar 
neutrinos.

So, we assume neutrinos propagate in matter in the situation where the adiabatic limit is satis-
fied. As usual, the Hamiltonian is HS = Hosc + Hmat, where Hosc is the oscillation Hamiltonian 
in vacuum and Hmat is the matter potential. In addition, we assume energy conservation with two 
different conditions. One of them is when we suppose energy conservation only with the vacuum 
piece, [Hosc, V̄k] = 0, and another one is when we assume energy conservation only with the 
matter potential piece, [Hmat, V ′

k] = 0. Note that the V̄k and V ′
k follow the definition given by in 

Eq. (8) and both of them are different of Vk that may commutate with HS .
These two situations can try to investigate only the decoherence effect. One of them the neu-

trino state in vacuum can be changed due to the decoherence effect even it is present in the Sun, 
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for instance. With another one, it is possible to study decoherence effect in the Sun environment 
in order to change the matter effect through a dissipative phenomenon.

As the energy conservation constraint in subsystem of interest was assumed whatever the 
place that neutrino will go through, for both situations the quantum dissipator used in the propa-
gation in Eq. (5) is given by Eq. (12). However, as we have mentioned, this quantum dissipation 
includes only quantum decoherence effect in the propagation. So, for the quantum evolution in 
both situations, the Eq. (25) with H is now given by

H =
⎛
⎝ −γ1 −� − A cos 2θ 0

� + A cos 2θ −γ1 −A sin 2θ

0 A sin 2θ 0

⎞
⎠ , (36)

where γ1 comes from Dmn in Eq. (10) for both cases and in the equation above, H was written 
in mass basis representation.

The characteristic polynomial of the above matrix has a complicated solution, but if we 
consider γ1 is small such that it can be treated like a perturbation, we obtain in first order approx-
imation the following eigenvalues:

λ0 = −γ1
A2

�2
sin2 2θ̃;

λ1 = −γ1 + γ1
A2

�2
sin2 2θ̃ − i�̃;

λ2 = −γ1 + γ1
A2

�2
sin2 2θ̃ + i�̃, (37)

where A = √
2GF ne and, for sake of simplicity, we can rewrite H in the effective mass basis, 

such that we get

H =
⎛
⎝ −γ̃1 −�̃ 0

�̃ −γ̃1 0
0 0 −γ̃3

⎞
⎠ , (38)

with γ̃3 = γ1A
2 sin2 2θ̃/�2 and γ̃1 = γ1 − γ̃3. From H given by Eq. (38) we obtain the same 

state that was given in Eq. (30) where �1 would be defined by γ̃1 while � by γ̃3. With the 
same arguments that was given before, �1 becomes null and we obtain the state in Eq. (33). The 
interpretation is similar that was done before where �1 is not important and only the relaxation 
effect, � ∝ γ̃3, may change the probability.

In these two situations the constraints are [HS, V̄k] 
= 0 and [HS, V ′
k] 
= 0. Thus, we could ex-

pect that the result for these different constraints, [Hosc, V̄k] = 0 and [Hmat, V ′
k] = 0, are obtained 

by an evolution using the dissipator in Eq. (13), as we have seen in subsection 2.3. Besides, this 
result show that there is not a way to separate the subsystem of interest S in pieces which may or 
may not interact with the environment and here, as we have [HS, V̄k] 
= 0 and [HS, V ′

k] 
= 0 the 
relaxation effect appears naturally.

The decoherence and relaxation effects when the propagation in matter may have different 
magnitude from the vacuum case. However, independently of we assume [Hosc, V̄k] = 0 or 
[Hmat, V ′

k] = 0, we have the same result for the dissipative effects. This looks like an apparent 
problem because we cannot differentiate between these dissipative models in the solar neutrino 
case, for example.
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In special, the case where [Hosc, V̄k] = 0 the Eq. (38) shows relaxation effect is propor-
tional to the decoherence effect for neutrinos propagating in vacuum (the same occurs for the 
case [Hmat, V ′

k] = 0 [18]). This was the result obtained by Ref. [11] and thus, from this model-
dependent approach, the decoherence effect in vacuum, γ1, was limited by authors in Ref. [11]. 
Besides, the V̄k wrote there in our notation is written as

V̄k =
(

2
√

γ1 0

0 0

)
, (39)

which is different from the Vk(x) given in Eq. (27), where the matter potential becomes im-
portant and the energy conservation is always satisfied even when the propagation is through in 
non-constant matter.

In the Ref. [18] the authors made a microscopic model to the interaction between neutrinos 
and the solar environment and they reached a dynamic equation similar to Eq. (37), but there the 
dissipation effect appears as a consequence of this microscopic model where [Hmat, V ′

k] = 0 was 
satisfied. The dynamic obtained in Ref. [11] was also obtained by authors in Ref. [18] even the 
study propose being different one another, of course, they reached to same probability as well.

Therefore, the result of the last example is interesting because it has not trivial interpretation. 
And there is not in the literature a reliable limit for decoherence effect in the channel νe → νμ

obtained from a model-independent approach. Surely, it exists only limits on the relaxation and 
decoherence effects in the case of a particular model-dependent approach used by Ref. [11] in 
two neutrino approximation. So, other analysis using a general model-independent approach can 
be done using neutrinos that come from other sources, where the constraint [HS, Vk] = 0 can 
without any doubt be satisfied and the decoherence effect be limited.

5. Comments and conclusion

The quantum dissipator in Eq. (12) is related to decoherence effects while the quantum 
dissipator in Eq. (13) is related to decoherence plus relaxation effects. We explicitly relate de-
coherence effects with a quantum dissipator that conserves energy in the subsystem of interest, 
a condition that is fulfilled if [HS, Vk] = 0. If such condition is violated, then we relate such quan-
tum dissipator with relaxation effects. So, we introduce the unique form in which this condition 
is satisfied in all points of the evolution since HS is the Hamiltonian that governs the evolution 
in the usual approach. This means that HS is composed by mass and interaction Hamiltonians in 
matter propagation and only mass Hamiltonian in the case of the vacuum propagation.

We emphasized the differences and similarities between the H eigenvalues that are obtained 
when we used the dissipators in Eqs. (12) and (13). We clearly see when the relaxation effect 
is present in the model and how the behavior of the states is changed in the situation with and 
without the relaxation effects. We discussed the neutrino evolution in vacuum and in matter with 
constant density and pointed out how these situations can have similar treatments in open quan-
tum system formalism. We showed that in general the probabilities in vacuum and in constant 
matter can be written in similar ways, which is not an obvious result in this approach. It is inter-
esting to note that through the model developed in this article, we do not need to use any method 
of approximation to obtain the probabilities in all cases. This is different from what we can find 
in the literature [2,11,18].

We analyzed also the situation where the matter density is not constant. We obtained a dis-
sipation operator in Eq. (27) that conserves energy during the neutrino propagation through a 
variable matter density. We showed that the decoherence effect from our model-independent 
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analysis cannot be limited in situations where experiments can no longer access the oscillation 
term in the probabilities, as it is the case when the source is very far away from the detection 
point. On the other hand, the relaxation effect may still be tested and limited in such situations. 
Although, as it was made in Ref. [11] through a model-dependent approach, it is possible to limit 
the decoherence in this case because the decoherence effect is connected in some way with the 
relaxation effect. However, as we have pointed out, the relaxation and decoherence effects are 
different phenomena and both bring different behavior to the neutrinos.

We identified some ambiguities in the definition of decoherence effects present in the litera-
ture [11], where there is no clear distinction between decoherence and relaxation effects. In our 
understanding, the term decoherence is often used to describe a combined effect of decoherence 
and relaxation when neutrino evolves in a medium with variable density. We described how it 
would be a dissipative model with only quantum decoherence effects for propagation in matter 
with non-constant density. From the dissipative operator obtained in Eq. (27), it was possible to 
see why the decoherence effect was limited in Refs. [11] and mentioned in Ref. [18]. In fact, 
in those cases it could not exist decoherence effect only, but another effect related in some way 
with the decoherence effect, because the dissipative operator used by these references, Eq. (39), 
violates the condition [HS, Vk] = 0, when neutrinos propagate in constant or non-constant matter.

Comparing our approach with the ones found in the literature, it is possible to conclude that it 
avoids all the ambiguities about which kind of dissipative effect is acting on neutrinos. As stated 
before, the limit for the decoherence effect should be obtained through experiments that access 
the oscillation pattern in the flavor neutrino probabilities, like KamLAND [16], for instance. 
The result of the Ref. [11] can be interpreted as an upper limit on the decoherence effect which 
comes, in fact, from the restriction on the relaxation effect, once that both effects are connected 
in this model dependent analysis. Our model independent approach is able to put bounds on all 
dissipation effects in a direct way.
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