43 research outputs found

    Forecasting with dimension switching VARs

    Get PDF
    This paper develops methods for VAR forecasting when the researcher is uncertain about which variables enter the VAR, and the dimension of the VAR may be changing over time. It considers the case where there are N variables which might potentially enter a VAR and the researcher is interested in forecasting N ∗ of them. Thus, the researcher is faced with 2 N − N ∗ potential VARs. If N is large, conventional Bayesian methods can be infeasible due to the computational burden of dealing with a huge model space. Allowing for the dimension of the VAR to change over time only increases this burden. In light of these considerations, this paper uses computationally practical approximations adapted from the dynamic model averaging literature in order to develop methods for dynamic dimension selection (DDS) in VARs. We then show the benefits of DDS in a macroeconomic forecasting application. In particular, DDS switches between different parsimonious VARs and forecasts appreciably better than various small and large dimensional VARs

    Investigation of a VLSI neural network chip as part of a secondary vertex trigger

    Get PDF
    Abstract An analog VLSI neural network chip (ETANN) has been trained to detect secondary vertices in simulated data for a fixed target heavy flavour production experiment. The detector response and associative memory track finding were modelled by a simulation, but the vertex detection was performed in hardware by the neural network chip and requires only a few microseconds per event. The chip correctly tags 30% of the heavy flavour events while rejecting 99% of the background, and is thus well adapted for secondary vertex triggering applications. A general purpose VME module for interfacing the ETANN to experiments, equipped with ADC/DAC circuits and a 68070 CPU, is also presented

    Semiconductor pixel detectors for digital mammography

    Get PDF
    Abstract We present some results obtained with silicon and gallium arsenide pixel detectors to be applied in the field of digital mammography. Even though GaAs is suitable for medical imaging applications thanks to its atomic number, which allows a very good detection efficiency, it often contains an high concentrations of traps which decrease the charge collection efficiency (CCE). So we have analysed both electrical and spectroscopic performance of different SI GaAs diodes as a function of concentrations of dopants in the substrate, in order to find a material by which we can obtain a CCE allowing the detection of all the photons that interact in the detector. Nevertheless to be able to detect low contrast details, efficiency and CCE are not the only parameters to be optimized; also the stability of the detection system is fundamental. In the past we have worked with Si pixel detectors; even if its atomic number does not allow a good detection efficiency at standard thickness, it has a very high stability. So keeping in mind the need to increase the Silicon detection efficiency we performed simulations to study the behaviour of the electrical potential in order to find a geometry to avoid the risk of electrical breakdown

    Experimental study of Compton scattering reduction in digital mammographic imaging

    Get PDF
    In mammography, the first cause of image contrast reduction arises from the photons scattered inside the examined organ. The amount of Compton scattering strongly depends on the irradiation area and on the distance between the organ and the X-ray detector. We have experimentally evaluated how these geometrical conditions affect the scattering fraction. Our experimental setup includes a single photon counting device based on a silicon pixel detector as X-ray sensor; a lucite cylinder to simulate the breast tissue, and a lead collimator to define the irradiation area. We have evaluated the contrast and the signal-to-noise ratio for images acquired in different conditions

    Preface

    No full text

    A measurement of the kaon charge radius

    No full text
    The negative kaon electromagnetic form factor has been measured in the space-like q2 range 0.015\u20130.10 (GeV/c)2 by the direct scattering of 250 GeV kaons from electrons at the CERN SPS. It is found that the kaon mean square charge radius \u3008r2K\u3009 = 0.34 \ub1 0.05 fm2. From data collected simultaneously for \u3c0e scattering, the difference between the charged pion and kaon mean square radii (which is less sensitive to systematic errors) is found to be \u3008r2\u3c0\u3009 12 \u3008r2K> = 0.1 0 \ub1 0.045 fm2
    corecore