29 research outputs found

    Indirect Effects of High-Performance Buildings at Household and Community Level: A Systematic Literature Review

    Get PDF
    Towards a carbon-neutral society, the building sector has a pivotal role with still a great potential for improvement. A new generation of buildings is rising but, to set a more ambitious shift in the paradigm and to fully justify the additional efforts (technological and economic) needed to fill the gap between net zero and plus energy performances, it is essential to consider not only the direct effects, but also all the indirect impacts. However, research conducted in the last decade solely focuses on the direct effects, mainly energy savings, while the indirect impacts neither have a clear identity nor terminology and a defined list of the impacts and methodologies for their quantification is still missing. With these premises, a systematic literature review on the current state of the art was performed in this work, with the aim of (i) investigating the heterogeneous terminology used for such indirect effects, (ii) identifying a final potential list of impacts both at the household and at the community level and (iii) their macro-categorizations, and (iv) exploring the current implemented methodologies and indicators for an economic quantification. As a final result of the analysis, the authors propose a unique terminology for addressing the indirect effects of high-performance buildings. This paper sets the needed basis and common ground for future research in this field, meant to economically quantify the indirect effects in the building sector

    Assessment Model of End-of-Life Costs and Waste Quantification in Selective Demolitions: Case Studies of Nearly Zero-Energy Buildings

    Get PDF
    Innovative designs, such as those taking place in nearly zero-energy buildings, need to tackle Life Cycle Cost, because reducing the impact of use can carry other collateral and unexpected costs. For example, it is interesting to include the evaluation of end-of-life costs by introducing future activities of selective dismantling and waste management, to also improve the environmental performance of the demotion project. For this purpose, it is necessary to develop methods that relate the process of selective demolition to the waste quantification and the costs derived from its management. In addition, a sensitivity analysis of end-of-life parameters allows different construction types, waste treatment options, and waste management costs to be compared. The assessment of end-of-life costs in the present work is developed by a case-based reasoning. Cost data are obtained from three actual studies which are part of the H2020 CRAVEzero project (Cost Reduction and Market Acceleration for Viable Nearly Zero-Energy Buildings). Results show that end-of-life costs are similar to traditional building typologies. The most influential materials are part of the substructure and structure of the building, such as concrete and steel products

    Exploitation of Business Models for Deep Renovation

    Get PDF
    In this workshop, we discussed the exploitation experiences gathered in some relevant H2020 projects on deep renovation: TripleA-reno, ProGETonE, P2Endure, 4rinEU, STUNNING, and TURNkey Retrofit. Directives and practical insights that support the experimentation with exploitation strategies in EU-funded projects will be elaborated as outcome of the workshop. The ability to envision user needs and integrate them into a project value proposition is a vehicle towards more effective and sustainable business models for deep renovation practices. However, many projects still struggle to involve the user in their business model design method. In spite of the clarified potential for business models underpinning energy efficiency measures to generate profit in the clean energy market, the uptake of deep renovation practices is not flourishing to its full potential. Several barriers have been highlighted that still distress the market uptake of energy efficiency measures, among which the need for long-term capital for often comparatively small investments, the strain of measuring and distributing the energy savings due to deep renovation practices, as well as general lack of familiarity among consumers with renovation concepts. The dispute here, with even the economically sound business models, is that, for the user, there is an apparent lack of attractiveness for deep renovations, that goes beyond the mere financial savings or economical profitability offered by the investment. A conceivable resolution to upsurge the market uptake of renovation practices, is therefore the design of business models, which focus on the multiple environmental, social and financial benefits deep renovation practices might deliver for the different stakeholders involved in the process. Benefits, that are sometimes hard to monetise and generalize among the involved user groups, as they do not always resonate to the provider/receiver of these values equally, but on the contrary can develop contrasting interests. Therefore, in this report, we are summarizing the contributions of several H2020 projects on deep renovation, including: TripleA-reno [1], ProGETonE [2], P2Endure [3], 4rinEU [4], STUNNING [5], and TURNkey Retrofit [6]. This, in a way to explore what type of deep renovation business models exist in practice, and how they actually are impacting the EU market uptake of deep renovation practices

    Multi-objective optimization algorithm coupled to EnergyPLAN software: The EPLANopt model

    Get PDF
    The planning of energy systems with high penetration of renewables is becoming more and more important due to environmental and security issues. On the other hand, high shares of renewables require proper grid integration strategies. In order to overcome these obstacles, the diversification of renewable energy technologies, programmable or not, coupled with different types of storage, daily and seasonal, is recommended. The optimization of the different energy sources is a multi-objective optimization problem because it concerns economical, technical and environmental aspects. The aim of this study is to present the model EPLANopt, developed by Eurac Research, which couples the deterministic simulation model EnergyPLAN developed by Aalborg University with a Multi-Objective Evolutionary Algorithm built on the Python library DEAP. The test case is the energy system of South Tyrol, for which results obtained through this methodology are presented. Particular attention is devoted to the analysis of energy efficiency in buildings. A curve representing the marginal costs of the different energy efficiency strategies versus the annual energy saving is applied to the model through an external Python script. This curve describes the energy efficiency costs for different types of buildings depending on construction period and location

    Repository of Deep Renovation Packages Based on Industrialized Solutions: Definition and Application

    No full text
    Renovation Wave aims to boost the uptake of deep renovation towards the CO2 emission targets for 2030. In this perspective, there is the need of technologies and solution sets for improving the deep renovation process as well as demonstrating the performances for supporting the stakeholders in the decision-making process. To cope with the issue, this work presents a methodology for setting up a repository of building deep renovation packages that integrates industrialised facade technologies and more traditional solutions. The performances feeding into the repository have been evaluated by means of transient detailed simulations on a set of reference buildings in representative European climate conditions. The renovation packages are evaluated in terms of key performance indicators dealing with five areas: energy, comfort, pollutant emissions, cost, and renovation time. The defined repository includes 289 assessed technology packages and associated performances across Europe, providing a comprehensive support to identify the most effective solutions according to the user needs. The paper presents the application of the repository with two examples of stakeholders’ decision-making paths for selecting the deep renovation packages according to different priorities and expected targets

    Sensitivity analysis as support for reliable life cycle cost evaluation applied to eleven nearly zero-energy buildings in Europe

    No full text
    Life cycle cost analysis represents a strategic tool for supporting the decision-making process while designing a new building or a renovation towards a nearly zero-energy target. Nevertheless, one of the main obstacles undermining the wide application of life cycle cost analysis deals with the effort in collecting the whole set of inputs and boundary conditions and the associated reliability of the results. To address the issue, this work compares the application of different sensitivity analysis methodologies on eleven nearly zero-energy buildings with different uses and in several European contexts, highlighting the strengths and weaknesses. Moreover, it introduces and assesses an approach for applying sensitivity analysis in life cycle cost evaluations to find an effective balance between the effort for calculation, data collection and the reliability of life cycle cost. A main result is the demonstration of a sensitivity analysis procedure to identify and evaluate parameters and boundary conditions with the largest impact on the life cycle cost of the analysed buildings, namely, the interest rate, construction and equipment maintenance costs, structural element costs, and electricity prices. These parameters lead to variations in LCC of up to 37%, with an average of 26% around the median. By focusing a more detailed analysis on these parameters, we could assess the potential life cycle cost range due to input uncertainties with a high degree of confidence while keeping efforts for practitioners reasonable

    The effort to bring existing buildings towards the A class: A discussion on the application of calculation methodologies

    No full text
    The diffusion of the energy certification in Italy is gradually making the users aware of the buildings’ energy performance, at least in some regions. For the existing buildings, the challenge is not only the energy performance calculation, but the analysis of the refurbishment strategies to obtain low energy buildings towards the A class. Basing on European Standards EN ISO 13790 and EN 15316, the Technical Standards UNI/TS 11300 (part 1 and 2) represent the procedures defined at national level. They allow different approaches and levels of simplification in the calculation of various representative energy parameters that could bring to variations in the results. The first aim of the work is the analysis of the most suitable solutions for existing buildings and the real possibilities to move towards the A-class requirements. Another considered aspect is the application of different calculation methods to reach this target, showing how different choices in terms of input data and methodologies (allowed by the Technical Standards) can bring to different values of the energy performance indices. This could represent a problem for the reproducibility of the calculations and their reliability in the definition of the class level reachable through refurbishment. The research has been supported by the analysis of some representative cases of common national residential building stock, comparing the energy performance obtained with different calculation methods allowed by National Technical Standards and laws. The results show some differences which can lead to ambiguities about the class definition and the most suitable methodology to adopt. Some considerations to obtain reliable values of energy performance addressing the refurbishment towards the A class are presented

    New domain for promoting energy efficiency: Energy Flexible Building Cluster

    No full text
    The ongoing energy system shift-from traditional centralized fossil fuel based to decentralized renewable energy sources based-requires a strengthened control of energy matching. Smart buildings represent the latest step in building energy evolution and perform as active participants in the cluster/energy infrastructure scale, becoming energy prosumers. In this framework, the IEA EBC Annex 67 introduces the concept of 'Energy Flexible Building', defined as a building able to manage its demand and generation in accordance with local climate conditions, user needs and grid requirements. Currently, there is no insight into how much flexibility a building may offer, and this study aims to overview the theoretical approaches and existing indicators to evaluate the Energy Flexibility of building clusters. The focus on cluster scale allows for the exploitation of the variation in energy consumption patterns between different types of buildings and the coordination of load shifting for the improvement of renewable energy use. The reviewed indicators can contribute to the definition of the Smart Readiness Indicator, introduced in the European Commission proposal for the EPBD revision, in order to test a building's technological readiness to adapt to the needs of the occupants and the energy environment, as well as to operate more efficiently

    Office Occupants’ Perspective Dealing with Energy Flexibility: A Large-Scale Survey in the Province of Bolzano

    No full text
    The current energy system is dealing with an increasing share of renewable energy that, because of its intermittent availability, can affect the effectiveness of the energy supply. To cope with the problem, buildings need to become energy flexible. According to the definition given by IEA EBC Annex 67, energy flexibility is the ability of a building to manage its demand and generation according to local climate conditions, user needs and grid requirements. Users of energy-flexible buildings play a crucial role for an effective implementation, thus user acceptance and proper behaviour are important factors. In order to understand the current level of awareness on the topic and the general acceptance of the users, this paper presents the results of a large-scale survey distributed in the office buildings of the Province of Bolzano (Italy). This study investigates the information, experience, beliefs, and desires of the building users (i.e., office employees) with concepts and technologies dealing with energy flexibility, such as smart grids, smart appliances, and smart meters. This study identifies (i) the main socio-demographic characteristics associated to the information and desires about energy flexibility in office buildings, and (ii) the main conditions of social acceptance of flexible energy usages. Although this work is focused on a specific user type (i.e., office workers in the Province of Bolzano) and the results cannot be generalized, the analysis offers an interesting insight on the user perspectives and acceptance on energy flexibility and can be easily replicated. The results can be used at local level to provide insights for policies and strategies to encourage building users to be more flexible
    corecore