249 research outputs found

    A historical reflection on the discovery of human retroviruses

    Get PDF
    The discovery of HIV-1 as the cause of AIDS was one of the major scientific achievements during the last century. Here the events leading to this discovery are reviewed with particular attention to priority and actual contributions by those involved. Since I would argue that discovering HIV was dependent on the previous discovery of the first human retrovirus HTLV-I, the history of this discovery is also re-examined. The first human retroviruses (HTLV-I) was first reported by Robert C. Gallo and coworkers in 1980 and reconfirmed by Yorio Hinuma and coworkers in 1981. These discoveries were in turn dependent on the previous discovery by Gallo and coworkers in 1976 of interleukin 2 or T-cell growth factor as it was called then. HTLV-II was described by Gallo's group in 1982. A human retrovirus distinct from HTLV-I and HTLV-II in that it was shown to have the morphology of a lentivirus was in my mind described for the first time by Luc Montagnier in an oral presentation at Cold Spring Harbor in September of 1983. This virus was isolated from a patient with lymphadenopathy using the protocol previously described for HTLV by Gallo. The first peer reviewed paper by Montagnier's group of such a retrovirus, isolated from two siblings of whom one with AIDS, appeared in Lancet in April of 1984. However, the proof that a new human retrovirus (HIV-1) was the cause of AIDS was first established in four publications by Gallo's group in the May 4th issue of Science in 1984

    Impact of antibody quality and anamnestic response on viremia control post-challenge in a combined Tat/Env vaccine regimen in rhesus macaques

    Get PDF
    AbstractPreviously, priming rhesus macaques with Adenovirus type 5 host range mutant-recombinants encoding Tat and Env and boosting with Tat and Env protein in MPL-SE controlled chronic viremia by 4 logs following homologous intravenous SHIV89.6P challenge. Here we evaluated Tat, Env, and Tat/Env regimens for immunogenicity and protective efficacy using clade C Env, alum adjuvant, and a heterologous intrarectal SHIV1157ipd3N4 challenge. Despite induction of strong cellular and humoral immunity, Tat/Env group T and B-cell memory responses were not significantly enhanced over Tat- or Env-only groups. Lack of viremia control post-challenge was attributed to lower avidity Env antibodies and no anamnestic ADCC response or SHIV1157ipd3N4 neutralizing antibody development post-challenge. Poor biologic activity of the Tat immunogen may have impaired Tat immunity. In the absence of sterilizing immunity, strong anamnestic responses to heterologous virus can help control viremia. Both antibody breadth and optimal adjuvanticity are needed to elicit high-quality antibody for protective efficacy

    Oral Immunization with a Live Coxsackievirus/HIV Recombinant Induces Gag p24-Specific T Cell Responses

    Get PDF
    The development of an HIV/AIDS vaccine has proven to be elusive. Because human vaccine trials have not yet demonstrated efficacy, new vaccine strategies are needed for the HIV vaccine pipeline. We have been developing a new HIV vaccine platform using a live enterovirus, coxsackievirus B4 (CVB4) vector. Enteroviruses are ideal candidates for development as a vaccine vector for oral delivery, because these viruses normally enter the body via the oral route and survive the acidic environment of the stomach.We constructed a live coxsackievirus B4 recombinant, CVB4/p24(73(3)), that expresses seventy-three amino acids of the gag p24 sequence (HXB2) and assessed T cell responses after immunization of mice. The CVB4 recombinant was physically stable, replication-competent, and genetically stable. Oral or intraperitoneal immunization with the recombinant resulted in strong systemic gag p24-specific T cell responses as determined by the IFN-gamma ELISPOT assay and by multiparameter flow cytometry. Oral immunization with CVB4/p24(73(3)) resulted in a short-lived, localized infection of the gut without systemic spread. Because coxsackieviruses are ubiquitous in the human population, we also evaluated whether the recombinant was able to induce gag p24-specific T cell responses in mice pre-immunized with the CVB4 vector. We showed that oral immunization with CVB4/p24(73(3)) induced gag p24-specific immune responses in vector-immune mice.The CVB4/p24(73(3)) recombinant retained the physical and biological characteristics of the parental CVB4 vector. Oral immunization with the CVB4 recombinant was safe and resulted in the induction of systemic HIV-specific T cell responses. Furthermore, pre-existing vector immunity did not preclude the development of gag p24-specific T cell responses. As the search continues for new vaccine strategies, the present study suggests that live CVB4/HIV recombinants are potential new vaccine candidates for HIV

    HIV Infection and Gut Mucosal Immune Function: Updates on Pathogenesis with Implications for Management and Intervention

    Get PDF
    HIV is primarily a sexually transmitted infection. However, given that the gastrointestinal tract (GIT) houses most of the body’s lymphocytes, including activated memory CD4+ T cells that are preferential targets for HIV, recent research has focused on the role of the GIT in transmission and pathogenesis. In health, the GIT maintains a balance between immune tolerance and rapid responsiveness. A complex network of innate and adaptive responses maintains this balance, which is severely perturbed in HIV infection. Recent studies have focused on mechanisms of GIT CD4+ T-cell depletion and epithelial disruption in HIV infection, the role of inflammation in accelerating viral dissemination, the kinetics of the adaptive response following transmission, and the extent of T-cell reconstitution following antiretroviral therapy. This review summarizes the results of recent investigations that may have important implications for the development of vaccines, microbicides, and therapeutic interventions for HIV and other mucosal pathogens

    Boosting of ALVAC-SIV vaccine-primed macaques with the CD4-SIVgp120 fusion protein elicits antibodies to V2 associated with a decreased risk of SIVmac251 acquisition

    Get PDF
    The recombinant ALVAC vaccine coupled with the monomeric gp120/alum protein have decreased the risk of HIV and SIV acquisition. Ab responses to the V1/V2 regions have correlated with a decreased risk of virus acquisition in both humans and macaques. We hypothesized that the breadth and functional profile of Abs induced by an ALVAC/envelope protein regimen could be improved by substituting the monomeric gp120 boost, with the full-length single-chain (FLSC) protein. FLSC is a CD4-gp120 fusion immunogen that exposes cryptic gp120 epitopes to the immune system. We compared the immunogenicity and relative efficiency of an ALVAC-SIV vaccine boosted either with bivalent FLSC proteins or with monomeric gp120 in alum. FLSC was superior to monomeric gp120 in directing Abs to the C3 a2 helix, the V5 loop, and the V3 region that contains the putative CCR5 binding site. In addition, FLSC boosting elicited significantly higher binding Abs to V2 and increased both the Ab-dependent cellular cytotoxicity activity and the breadth of neutralizing Abs. However, the FLSC vaccine regimen demonstrated only a trend in vaccine efficacy, whereas the monomeric gp120 regimen significantly decreased the risk of SIVmac251 acquisition. In both vaccine regimens, anti-V2 Abs correlated with a decreased risk of virus acquisition but differed with regard to systemic or mucosal origin. In the FLSC regimen, serum Abs to V2 correlated, whereas in the monomeric gp120 regimen, V2 Abs in rectal secretions, the site of viral challenge, were associated with efficacy. The Journal of Immunology, 2016, 197: 2726-2737

    Pre-Clinical Evaluation of a Replication-Competent Recombinant Adenovirus Serotype 4 Vaccine Expressing Influenza H5 Hemagglutinin

    Get PDF
    Influenza virus remains a significant health and social concern in part because of newly emerging strains, such as avian H5N1 virus. We have developed a prototype H5N1 vaccine using a recombinant, replication-competent Adenovirus serotype 4 (Ad4) vector, derived from the U.S. military Ad4 vaccine strain, to express the hemagglutinin (HA) gene from A/Vietnam/1194/2004 influenza virus (Ad4-H5-Vtn). Our hypothesis is that a mucosally-delivered replicating Ad4-H5-Vtn recombinant vector will be safe and induce protective immunity against H5N1 influenza virus infection and disease pathogenesis.The Ad4-H5-Vtn vaccine was designed with a partial deletion of the E3 region of Ad4 to accommodate the influenza HA gene. Replication and growth kinetics of the vaccine virus in multiple human cell lines indicated that the vaccine virus is attenuated relative to the wild type virus. Expression of the HA transgene in infected cells was documented by flow cytometry, western blot analysis and induction of HA-specific antibody and cellular immune responses in mice. Of particular note, mice immunized intranasally with the Ad4-H5-Vtn vaccine were protected against lethal H5N1 reassortant viral challenge even in the presence of pre-existing immunity to the Ad4 wild type virus.Several non-clinical attributes of this vaccine including safety, induction of HA-specific humoral and cellular immunity, and efficacy were demonstrated using an animal model to support Phase 1 clinical trial evaluation of this new vaccine

    The Role of Natural Killer (NK) Cells and NK Cell Receptor Polymorphisms in the Assessment of HIV-1 Neutralization

    Get PDF
    The importance of innate immune cells in HIV-1 pathogenesis and protection has been highlighted by the role of natural killer (NK) cells in the containment of viral replication. Use of peripheral blood mononuclear cells (PBMC) in immunologic studies provides both HIV-1 target cells (ie. CD4+ T cells), as well as anti-HIV-1 effector cells, such as NK cells. In this study, NK and other immune cell populations were analyzed in HIV-negative donor PBMC for an impact on the anti-HIV activity of polyclonal and monoclonal antibodies. NK cell percentages were significantly higher in donor PBMC that supported lower levels of viral replication. While the percentage of NK cells was not directly associated with neutralization titers, NK cell-depletion significantly diminished the antiviral antibody activity by up to three logs, and polymorphisms in NK killer immunoglobulin receptor (KIR) and FcγRIIIa alleles appear to be associated with this affect. These findings demonstrate that NK cells and NK cell receptor polymorphisms may influence assessment of traditional HIV-1 neutralization in a platform where antibody is continuously present. This format appears to simultaneously assess conventional entry inhibition (neutralization) and non-neutralizing antibody-dependent HIV inhibition, which may provide the opportunity to delineate the dominant antibody function(s) in polyclonal vaccine responses

    International Network for Comparison of HIV Neutralization Assays: The NeutNet Report

    Get PDF
    BACKGROUND: Neutralizing antibody assessments play a central role in human immunodeficiency virus type-1 (HIV-1) vaccine development but it is unclear which assay, or combination of assays, will provide reliable measures of correlates of protection. To address this, an international collaboration (NeutNet) involving 18 independent participants was organized to compare different assays. METHODS: Each laboratory evaluated four neutralizing reagents (TriMab, 447-52D, 4E10, sCD4) at a given range of concentrations against a panel of 11 viruses representing a wide range of genetic subtypes and phenotypes. A total of 16 different assays were compared. The assays utilized either uncloned virus produced in peripheral blood mononuclear cells (PBMCs) (virus infectivity assays, VI assays), or their Env-pseudotyped (gp160) derivatives produced in 293T cells (PSV assays) from molecular clones or uncloned virus. Target cells included PBMC and genetically-engineered cell lines in either a single- or multiple-cycle infection format. Infection was quantified by using a range of assay read-outs that included extracellular or intracellular p24 antigen detection, RNA quantification and luciferase and beta-galactosidase reporter gene expression. FINDINGS: PSV assays were generally more sensitive than VI assays, but there were important differences according to the virus and inhibitor used. For example, for TriMab, the mean IC50 was always lower in PSV than in VI assays. However, with 4E10 or sCD4 some viruses were neutralized with a lower IC50 in VI assays than in the PSV assays. Inter-laboratory concordance was slightly better for PSV than for VI assays with some viruses, but for other viruses agreement between laboratories was limited and depended on both the virus and the neutralizing reagent. CONCLUSIONS: The NeutNet project demonstrated clear differences in assay sensitivity that were dependent on both the neutralizing reagent and the virus. No single assay was capable of detecting the entire spectrum of neutralizing activities. Since it is not known which in vitro assay correlates with in vivo protection, a range of neutralization assays is recommended for vaccine evaluation
    • …
    corecore