128 research outputs found
An experimental approach for investigating many-body phenomena in Rydberg-interacting quantum systems
Recent developments in the study of ultracold Rydberg gases demand an
advanced level of experimental sophistication, in which high atomic and optical
densities must be combined with excellent control of external fields and
sensitive Rydberg atom detection. We describe a tailored experimental system
used to produce and study Rydberg-interacting atoms excited from dense
ultracold atomic gases. The experiment has been optimized for fast duty cycles
using a high flux cold atom source and a three beam optical dipole trap. The
latter enables tuning of the atomic density and temperature over several orders
of magnitude, all the way to the Bose-Einstein condensation transition. An
electrode structure surrounding the atoms allows for precise control over
electric fields and single-particle sensitive field ionization detection of
Rydberg atoms. We review two experiments which highlight the influence of
strong Rydberg--Rydberg interactions on different many-body systems. First, the
Rydberg blockade effect is used to pre-structure an atomic gas prior to its
spontaneous evolution into an ultracold plasma. Second, hybrid states of
photons and atoms called dark-state polaritons are studied. By looking at the
statistical distribution of Rydberg excited atoms we reveal correlations
between dark-state polaritons. These experiments will ultimately provide a
deeper understanding of many-body phenomena in strongly-interacting regimes,
including the study of strongly-coupled plasmas and interfaces between atoms
and light at the quantum level.Comment: 14 pages, 11 figures; submitted to a special issue of 'Frontiers of
Physics' dedicated to 'Quantum Foundation and Technology: Frontiers and
Future
Anisotropic 2D diffusive expansion of ultra-cold atoms in a disordered potential
We study the horizontal expansion of vertically confined ultra-cold atoms in
the presence of disorder. Vertical confinement allows us to realize a situation
with a few coupled harmonic oscillator quantum states. The disordered potential
is created by an optical speckle at an angle of 30{\deg} with respect to the
horizontal plane, resulting in an effective anisotropy of the correlation
lengths of a factor of 2 in that plane. We observe diffusion leading to
non-Gaussian density profiles. Diffusion coefficients, extracted from the
experimental results, show anisotropy and strong energy dependence, in
agreement with numerical calculations
Interaction enhanced imaging of individual atoms embedded in dense atomic gases
We propose a new all-optical method to image individual atoms within dense
atomic gases. The scheme exploits interaction induced shifts on highly
polarizable excited states, which can be spatially resolved via an
electromagnetically induced transparency resonance. We focus in particular on
imaging strongly interacting many-body states of Rydberg atoms embedded in an
ultracold gas of ground state atoms. Using a realistic model we show that it is
possible to image individual impurity atoms with enhanced sensitivity and high
resolution despite photon shot noise and atomic density fluctuations. This new
imaging scheme is ideally suited to equilibrium and dynamical studies of
complex many-body phenomena involving strongly interacting atoms. As an example
we study blockade effects and correlations in the distribution of Rydberg atoms
optically excited from a dense gas.Comment: 5 pages plus supplementary materia
Full counting statistics of laser excited Rydberg aggregates in a one-dimensional geometry
We experimentally study the full counting statistics of few-body Rydberg
aggregates excited from a quasi-one-dimensional Rydberg gas. We measure
asymmetric excitation spectra and increased second and third order statistical
moments of the Rydberg number distribution, from which we determine the average
aggregate size. Direct comparisons with numerical simulations reveal the
presence of liquid-like spatial correlations, and indicate sequential growth of
the aggregates around an initial grain. These findings demonstrate the
importance of dissipative effects in strongly correlated Rydberg gases and
introduce a way to study spatio-temporal correlations in strongly-interacting
many-body quantum systems without imaging.Comment: 6 pages plus supplemen
The theory of quantum levitators
We develop a unified theory for clocks and gravimeters using the
interferences of multiple atomic waves put in levitation by traveling light
pulses. Inspired by optical methods, we exhibit a propagation invariant, which
enables to derive analytically the wave function of the sample scattering on
the light pulse sequence. A complete characterization of the device sensitivity
with respect to frequency or to acceleration measurements is obtained. These
results agree with previous numerical simulations and confirm the conjecture of
sensitivity improvement through multiple atomic wave interferences. A realistic
experimental implementation for such clock architecture is discussed.Comment: 11 pages, 6 Figures. Minor typos corrected. Final versio
Laser microfluidics: fluid actuation by light
The development of microfluidic devices is still hindered by the lack of
robust fundamental building blocks that constitute any fluidic system. An
attractive approach is optical actuation because light field interaction is
contactless and dynamically reconfigurable, and solutions have been anticipated
through the use of optical forces to manipulate microparticles in flows.
Following the concept of an 'optical chip' advanced from the optical actuation
of suspensions, we propose in this survey new routes to extend this concept to
microfluidic two-phase flows. First, we investigate the destabilization of
fluid interfaces by the optical radiation pressure and the formation of liquid
jets. We analyze the droplet shedding from the jet tip and the continuous
transport in laser-sustained liquid channels. In the second part, we
investigate a dissipative light-flow interaction mechanism consisting in
heating locally two immiscible fluids to produce thermocapillary stresses along
their interface. This opto-capillary coupling is implemented in adequate
microchannel geometries to manipulate two-phase flows and propose a contactless
optical toolbox including valves, droplet sorters and switches, droplet
dividers or droplet mergers. Finally, we discuss radiation pressure and
opto-capillary effects in the context of the 'optical chip' where flows,
channels and operating functions would all be performed optically on the same
device
Light-shift tomography in an optical-dipole trap for neutral atoms
We report on light-shift tomography of a cloud of 87 Rb atoms in a
far-detuned optical-dipole trap at 1565 nm. Our method is based on standard
absorption imaging, but takes advantage of the strong light-shift of the
excited state of the imaging transition, which is due to a quasi-resonance of
the trapping laser with a higher excited level. We use this method to (i) map
the equipotentials of a crossed optical-dipole trap, and (ii) study the
thermalisation of an atomic cloud by following the evolution of the
potential-energy of atoms during the free-evaporation process
Conduction of Ultracold Fermions Through a Mesoscopic Channel
In a mesoscopic conductor electric resistance is detected even if the device
is defect-free. We engineer and study a cold-atom analog of a mesoscopic
conductor. It consists of a narrow channel connecting two macroscopic
reservoirs of fermions that can be switched from ballistic to diffusive. We
induce a current through the channel and find ohmic conduction, even for a
ballistic channel. An analysis of in-situ density distributions shows that in
the ballistic case the chemical potential drop occurs at the entrance and exit
of the channel, revealing the presence of contact resistance. In contrast, a
diffusive channel with disorder displays a chemical potential drop spread over
the whole channel. Our approach opens the way towards quantum simulation of
mesoscopic devices with quantum gases
- …