55 research outputs found

    Microfluidic Transport Driven by Opto-Thermal Effects

    Get PDF
    This chapter reviews several approaches towards the manipulation and transport of fluids and macromolecules by optically-induced thermal effects

    Optical flow focusing: Light-induced destabilization of stable liquid threads

    Get PDF
    International audienceConfinement of flowing liquid threads by solid walls makes them stable with respect to the Rayleigh–Plateau instability. We demonstrate here that light can break this stability, by forcing locally the deformation of the liquid interface through thermally-induced Marangoni stresses. Depending upon the confining conditions and fluid properties, this optocapillary deformation either pinches or inflates the thread, which may in both cases lead to its localized fragmentation into droplets. In the pinching regime, the laser beam behaves as a wall-free constriction that flow fo-cuses the thread, leading to successive regimes of single and multiple periodicity. Light-driven local Marangoni stresses may prove an elegant contactless alternative to control reversibly the thread-to-droplet transition for digital microfluidics

    Contrôle tout-optique du cycle de la vie d'une gouttelette en microcanal

    Get PDF
    La formation et le transport d'une gouttelette dans un microcanal sont généralement imposés par la géométrie figée de ce microcanal. Pour surmonter cette contrainte, nous présentons une nouvelle approche basée sur la génération par laser de contraintes thermocapillaires localisées. Nous parvenons ainsi à contrôler sans contact ni microfabrication dédiée le débit et la taille des gouttelettes émises (vanne et calibreur), à trier ces gouttes (aiguillage), à les forcer optiquement à coalescer (mélangeur) ou au contraire à forcer la rupture en deux gouttes filles de taille contrôlée (diviseur). Utilisés en combinaison, ces nouveaux microcomposants hydrauliques élémentaires ouvrent la voie vers une approche tout-optique du laboratoire sur puce

    Laser microfluidics: fluid actuation by light

    Full text link
    The development of microfluidic devices is still hindered by the lack of robust fundamental building blocks that constitute any fluidic system. An attractive approach is optical actuation because light field interaction is contactless and dynamically reconfigurable, and solutions have been anticipated through the use of optical forces to manipulate microparticles in flows. Following the concept of an 'optical chip' advanced from the optical actuation of suspensions, we propose in this survey new routes to extend this concept to microfluidic two-phase flows. First, we investigate the destabilization of fluid interfaces by the optical radiation pressure and the formation of liquid jets. We analyze the droplet shedding from the jet tip and the continuous transport in laser-sustained liquid channels. In the second part, we investigate a dissipative light-flow interaction mechanism consisting in heating locally two immiscible fluids to produce thermocapillary stresses along their interface. This opto-capillary coupling is implemented in adequate microchannel geometries to manipulate two-phase flows and propose a contactless optical toolbox including valves, droplet sorters and switches, droplet dividers or droplet mergers. Finally, we discuss radiation pressure and opto-capillary effects in the context of the 'optical chip' where flows, channels and operating functions would all be performed optically on the same device

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Écoulements microfluidiques pilotés sans contact par une onde laser

    No full text
    The thermocapillary (or Marangoni) effect is the mechanical result of an interfacial tension gradient induced by a temperature gradient on a fluid interface. This effect manifests itself by inducing (i) the migration of an immersed finite-size object (droplet, bubble), and (ii) a deflexion of the interface. Due to its interfacial nature, the Marangoni effect is particularly relevant at small length scales, especially in the context of two-phase microfluidics. This thesis aims at applying the thermocapillary effect locally induced by laser heating, in order to create some basic optofluidic actuators (valve, switch, sampler). A quantitative study of these actuators is presented. The laser-forced destabilization of a co-flowing microfluidic jet, leading to its breakup, is also investigated. This “optical toolbox” represents a non-contacting, and microfabricationfree approach for the production and handling of droplets in digital microfluidics. Moreover, to characterize these droplet over long times, thus considering statistically significant populations, a simple optoelectronic device has been developed for measuring the size and velocity of the droplets in real time.L'effet thermocapillaire (ou Marangoni) est la résultante mécanique d'un gradient de tension interfaciale induit par la présence d'un gradient de température sur une interface fluide. Il se manifeste par (i) la migration d'un objet fini (goutte, bulle) immergé, et (ii) une déflexion de l'interface. Sa nature interfaciale le rend particulièrement pertinent à petite échelle, notamment en microfluidique diphasique. Ce travail de thèse montre comment un effet thermocapillaire induit localement par chauffage laser peut être utilisé pour produire des composants optofluidiques élémentaires (vanne, aiguillage, échantillonneur), et en présente une étude quantitative. La déstabilisation d'un jet microfluidique forcée par laser, conduisant à sa rupture, est également présentée et caractérisée. Cette « boîte à outils » optique fournit ainsi une approche sans contact, pour produire et manipuler des gouttes en microfluidique digitale sans nécessité d'une microfabrication dédiée. Par ailleurs, afin de caractériser sur des temps longs les gouttes produites, et ainsi considérer des populations statistiquement significatives, un dispositif optoélectronique simple pour mesurer les gouttes et leur vitesse en temps réel a également été développé

    Optical twisting to monitor the rheology of single cells

    No full text
    International audienceBackground - Biological cells exhibit complex mechanical properties which determine their responses to applied force. Objective - We developed an optical method to probe the temporal evolution of power-law rheology of single cells. Methods - The method consisted in applying optically a constant mechanical torque to a birefringent microparticle bound to the cell membrane, and observing dynamics of the particle's in-plane rotation. Results - The deformation dynamics of the membrane followed a power law of time, which directly relates to cytoskeletal prestress as reported in the literature. The temporal evolution of this rheological behaviour, over time scales of several minutes, showed strong variations of the exponent on single adherent cells not subject to any specific treatment. Conclusions - The consistent observation of variations in the exponent suggests that, in their normal activity, living cells modulate their prestress by up to three orders of magnitude within minutes

    Écoulements microfluidiques pilotés sans contact par une onde laser

    No full text
    L'effet thermocapillaire (ou Marangoni) est la résultante mécanique d'un gradient de tension interfaciale induit par la présence d'un gradient de température sur une interface fluide. Il se manifeste par (i) la migration d'un objet fini (goutte, bulle) immergé, et (ii) une déflexion de l'interface. Sa nature interfaciale le rend particulièrement pertinent à petite échelle, notamment en microfluidique diphasique. Ce travail de thèse montre comment un effet thermocapillaire induit localement par chauffage laser peut être utilisé pour produire des composants optofluidiques élémentaires (vanne, aiguillage, échantillonneur), et en présente une étude quantitative. La déstabilisation d'un jet microfluidique forcée par laser, conduisant à sa rupture, est également présentée et caractérisée. Cette « boîte à outils » optique fournit ainsi une approche sans contact, pour produire et manipuler des gouttes en microfluidique digitale sans nécessité d'une microfabrication dédiée. Par ailleurs, afin de caractériser sur des temps longs les gouttes produites, et ainsi considérer des populations statistiquement significatives, un dispositif optoélectronique simple pour mesurer les gouttes et leur vitesse en temps réel a également été développé.The thermocapillary (or Marangoni) effect is the mechanical result of an interfacial tension gradient induced by a temperature gradient on a fluid interface. This effect manifests itself by inducing (i) the migration of an immersed finite-size object (droplet, bubble), and (ii) a deflexion of the interface. Due to its interfacial nature, the Marangoni effect is particularly relevant at small length scales, especially in the context of two-phase microfluidics. This thesis aims at applying the thermocapillary effect locally induced by laser heating, in order to create some basic optofluidic actuators (valve, switch, sampler). A quantitative study of these actuators is presented. The laser-forced destabilization of a co-flowing microfluidic jet, leading to its breakup, is also investigated. This “optical toolbox” represents a non-contacting, and microfabricationfree approach for the production and handling of droplets in digital microfluidics. Moreover, to characterize these droplet over long times, thus considering statistically significant populations, a simple optoelectronic device has been developed for measuring the size and velocity of the droplets in real time
    corecore