329 research outputs found

    An acylase system of Lactobacillus arabinosus

    Get PDF

    Failure of Delayed Feedback Deep Brain Stimulation for Intermittent Pathological Synchronization in Parkinson's Disease

    Get PDF
    Suppression of excessively synchronous beta-band oscillatory activity in the brain is believed to suppress hypokinetic motor symptoms of Parkinson's disease. Recently, a lot of interest has been devoted to desynchronizing delayed feedback deep brain stimulation (DBS). This type of synchrony control was shown to destabilize the synchronized state in networks of simple model oscillators as well as in networks of coupled model neurons. However, the dynamics of the neural activity in Parkinson's disease exhibits complex intermittent synchronous patterns, far from the idealized synchronous dynamics used to study the delayed feedback stimulation. This study explores the action of delayed feedback stimulation on partially synchronized oscillatory dynamics, similar to what one observes experimentally in parkinsonian patients. We employ a model of the basal ganglia networks which reproduces experimentally observed fine temporal structure of the synchronous dynamics. When the parameters of our model are such that the synchrony is unphysiologically strong, the feedback exerts a desynchronizing action. However, when the network is tuned to reproduce the highly variable temporal patterns observed experimentally, the same kind of delayed feedback may actually increase the synchrony. As network parameters are changed from the range which produces complete synchrony to those favoring less synchronous dynamics, desynchronizing delayed feedback may gradually turn into synchronizing stimulation. This suggests that delayed feedback DBS in Parkinson's disease may boost rather than suppress synchronization and is unlikely to be clinically successful. The study also indicates that delayed feedback stimulation may not necessarily exhibit a desynchronization effect when acting on a physiologically realistic partially synchronous dynamics, and provides an example of how to estimate the stimulation effect.Comment: 19 pages, 8 figure

    Neural Dynamics in Parkinsonian Brain:The Boundary Between Synchronized and Nonsynchronized Dynamics

    Full text link
    Synchronous oscillatory dynamics is frequently observed in the human brain. We analyze the fine temporal structure of phase-locking in a realistic network model and match it with the experimental data from parkinsonian patients. We show that the experimentally observed intermittent synchrony can be generated just by moderately increased coupling strength in the basal ganglia circuits due to the lack of dopamine. Comparison of the experimental and modeling data suggest that brain activity in Parkinson's disease resides in the large boundary region between synchronized and nonsynchronized dynamics. Being on the edge of synchrony may allow for easy formation of transient neuronal assemblies

    SDM—a server for predicting effects of mutations on protein stability and malfunction

    Get PDF
    The sheer volume of non-synonymous single nucleotide polymorphisms that have been generated in recent years from projects such as the Human Genome Project, the HapMap Project and Genome-Wide Association Studies means that it is not possible to characterize all mutations experimentally on the gene products, i.e. elucidate the effects of mutations on protein structure and function. However, automatic methods that can predict the effects of mutations will allow a reduced set of mutations to be studied. Site Directed Mutator (SDM) is a statistical potential energy function that uses environment-specific amino-acid substitution frequencies within homologous protein families to calculate a stability score, which is analogous to the free energy difference between the wild-type and mutant protein. Here, we present a web server for SDM (http://www-cryst.bioc.cam.ac.uk/~sdm/sdm.php), which has obtained more than 10 000 submissions since being online in April 2008. To run SDM, users must upload a wild-type structure and the position and amino acid type of the mutation. The results returned include information about the local structural environment of the wild-type and mutant residues, a stability score prediction and prediction of disease association. Additionally, the wild-type and mutant structures are displayed in a Jmol applet with the relevant residues highlighted

    Spatial variability in the mechanical properties of Gilsocarbon

    Get PDF
    The objective of this study is to investigate whether there is significant spatial variability in the mechanical properties of Gilsocarbon nuclear graphite at different sections of the billet; specifically the dynamic Poisson's ratio, dynamic shear modulus, dynamic Young's modulus and density. Similar studies have been done, usually in the context of manufacturing, to assess the quality of graphite components for nuclear reactors. In this new study, the measurements have been carried out at a much higher spatial resolution than previously. A Torness/Heysham B billet was machined into cubes so that measurements could be made across the circumference and height of the billet. ASTM standards were followed to assess the measurements of the samples. The spatial variability of material properties is described and analysed statistically. The study shows that material variability is present at different heights and circumferential locations of the billet. This discovery will have a significant impact on the structural integrity and through life performance predictions made in industry; both in current and future nuclear reactors. The computer modelling of graphite components may predict different outcomes to standard analyses (that use mean values) if this variability is incorporated into the analysis workflow; specifically through stochastic modelling

    Chronicles of Oklahoma

    Get PDF
    Article explores the political environment and history of Oklahoma Territory, focusing on the political parties that existed during the era and the bases of partisan choice. Worth Robert Miller provides insight about the impact of the People's, or Populist, Party on territorial politics

    Interaction of synchronized dynamics in cortical and subcortical circuits in Parkinson’s disease

    Get PDF
    poster abstractParkinson’s disease pathophysiology is marked by increased oscillatory and synchronous activity in the beta frequency band in cortical and basal ganglia circuits. This study explores the functional connections between synchronized dynamics of cortical areas and dynamics of subcortical areas in Parkinson’s disease. We simultaneously recorded neuronal units (spikes) and local field potentials (LFP) from subthalamic nucleus (STN), and electroencephalograms (EEGs) from the scalp in parkinsonian patients and analyzed the correlation between the time-courses of the spike-LFP synchronization and inter-electrode EEG synchronization. We found the (noninvasively obtained) time-course of the synchrony strength between EEG electrodes and the (invasively obtained) time-course of the synchrony between spiking unit and LFP in STN to be weakly, but significantly correlated with each other. This correlation is largest for the bilateral motor EEG synchronization followed by bilateral frontal EEG synchronization. Our observations suggest that there may be multiple functional modes by which the cortical and basal ganglia circuits interact with each other in Parkinson’s disease: not only synchronization may be observed between some areas in cortex and the basal ganglia, but also synchronization within cortex and within basal ganglia may be related, suggesting potentially more global way of functional interaction. More coherent dynamics in one brain region may modulate or activate the dynamics of another brain region in a more powerful way causing correlations between changes in synchrony strength in both regions
    corecore