603 research outputs found

    Deciphering the role of interleukin-22 in metabolic alterations

    Get PDF
    Inflammatory processes and metabolic alterations are supposed to substantially interact. Recently, cumulating reports describe a profound role of interleukin(IL)-22 in this relationship. IL-22 is a particular kind of immune mediator that is produced by certain lymphocyte populations and regulates the function of several tissue cells but not immune cells. So far, IL-22 was known to plays a fundamental role in the elimination of bacterial infections at border surfaces of the body and to protect tissues from damage. This research highlight article arranges the facts regarding the effects of IL-22 in the context of adiposity and metabolic alterations and postulates a new function of the immune system

    Integration of a RSI microstructure sensing package into a Seaglider

    Get PDF
    Seagliders are a type of propeller-less AUV that glide through the water by changing their buoyancy. They have become mainstream collectors of standard oceanographic data (conductivity, temperature, pressure, dissolved oxygen, fluorescence and backscatter) and are increasingly used as trucks to carry a wide variety of hydrographic and bio-geochemical sensors. The extended sensor capability enhances the utility of the gliders for oceanographic observations. Seagliders are designed and optimized for long-term missions (up to 10 months) and deep sea profiling (up to 1000 m). They provide high resolution oceanographic data with very good temporal and spatial density, in near real-time, at a fraction of the cost of ship collected data. These performance parameters are sometimes at odds with the physical dimensions and electrical requirements of the hydrographic and bio-geochemical sensors scientists want installed in gliders. However, as the acceptance of gliders as an integral component of the oceanographic suite of measurement tools grows so do the efforts of sensor vendors to develop products that meet the size, weight and power requirements for successful glider integration. Turbulence microstructure sensors are one measurement system that scientists desired on Seagliders but that until recently did not fit the glider footprint. In collaboration with Rockland Scientific, Inc., a suite of RSI turbulence microstructure sensors was recently integrated into a Seaglider and the system’s performance validated during field tests in Puget Sound near Seattle, WA and in Loch Linnhe on the west coast of Scotland. Ocean turbulence controls the mixing of water masses, biogeochemical fluxes within them, and facilitates ocean-atmosphere gas exchange. As a result, turbulence impacts global ocean circulation, polar ice melt rates, drawdown of atmospheric carbon dioxide and carbon deposition, coastal and deep ocean ecology, commercial fisheries, and the dispersion of pollutants. Turbulent mixing is also recognized as a key parameter in global climate models, used for understanding and predicting future climate change. Seagliders equipped with turbulence microstructure sensors will allow scientists to map the geographical distribution and temporal variability of mixing in the ocean on scales not possible with ship-based measurements. This presentation discusses the technical aspects of the integration of the turbulence sensor suite on a Seaglider with an emphasis on achieving high data quality, while retaining the performance characteristics of the Seaglider. We will also describe applications for this sensor suite, examine the turbulence measurement data already collected by the Seaglider and discuss future deployment plans

    Stability of Imipenem and Cilastatin Sodium in Total Parenteral Nutrient Solution

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141138/1/jpen0306.pd

    Phytotherapeuthics Affecting the IL-1/IL-17/G-CSF Axis: A Complementary Treatment Option for Hidradenitis Suppurativa?

    Get PDF
    Hidradenitis suppurativa (HS; also designated as acne inversa) is a chronic inflammatory disease characterized by painful skin lesions that occur in the axillary, inguinal, gluteal and perianal areas of the body. These lesions contain recurring deep-seated, inflamed nodules and pus-discharging abscesses and fistulas. Affecting about 1% of the population, this common disease has gained appropriate clinical attention in the last years. Associated with numerous comorbidities including metabolic syndrome, HS is considered a systemic disease that severely impairs the quality of life and shortens life expectancy. Therapeutic options for HS are limited, comprising long-term antibiotic treatment, the surgical removal of affected skin areas, and neutralization of TNF-alpha, the only approved systemic treatment. Novel treatment options are needed to close the therapeutic gap. HS pathogenesis is increasingly better understood. In fact, neutrophilic granulocytes (neutrophils) seem to be decisive for the development of the purulent destructive skin inflammation in HS. Recent findings suggest a key role of the immune mediators IL-1 beta, IL-17A and G-CSF in the migration into and activation of neutrophils in the skin. Although phytomedical drugs display potent immunoregulatory properties and have been suggested as complementary therapy in several chronic disorders, their application in HS has not been considered so far. In this review, we describe the IL-1/IL-17/G-CSF axis and evaluate it as potential target for an integrated phytomedical treatment of HS

    Molecular and functional changes in neutrophilic granulocytes induced by nicotine: a systematic review and critical evaluation

    Get PDF
    Background: Over 1.1 billion people smoke worldwide. The alkaloid nicotine is a prominent and addictive component of tobacco. In addition to tumors and cardiovascular disorders, tobacco consumption is associated with a variety of chronic-inflammatory diseases. Although neutrophilic granulocytes (neutrophils) play a role in the pathogenesis of many of these diseases, the impact of nicotine on neutrophils has not been systematically reviewed so far. Objectives: The aim of this systematic review was to evaluate the direct influence of nicotine on human neutrophil functions, specifically on cell death/damage, apoptosis, chemotaxis, general motility, adhesion molecule expression, eicosanoid synthesis, cytokine/chemokine expression, formation of neutrophil extracellular traps (NETs), phagocytosis, generation of reactive oxygen species (ROS), net antimicrobial activity, and enzyme release. Material and methods: This review was conducted according to the PRISMA guidelines. A literature search was performed in the databases NCBI Pubmed (R) and Web of Science (TM) in February 2023. Inclusion criteria comprised English written research articles, showing in vitro studies on the direct impact of nicotine on specified human neutrophil functions. Results: Of the 532 originally identified articles, data from 34 articles were finally compiled after several evaluation steps. The considered studies highly varied in methodological aspects. While at high concentrations (>3 mmol/l) nicotine started to be cytotoxic to neutrophils, concentrations typically achieved in blood of smokers (in the nmol/l range) applied for long exposure times (24-72h) supported the survival of neutrophils. Smoking-relevant nicotine concentrations also increased the chemotaxis of neutrophils towards several chemoattractants, elevated their production of elastase, lipocalin-2, CXCL8, leukotriene B4 and prostaglandin E2, and reduced their integrin expression. Moreover, while nicotine impaired the neutrophil phagocytotic and anti-microbial activity, a range of studies demonstrated increased NET formation. However, conflicting effects were found on ROS generation, selectin expression and release of beta-glucuronidase and myeloperoxidase. Conclusion: Nicotine seems to support the presence in the tissue and the inflammatory and selected tissue-damaging activity of neutrophils and reduces their antimicrobial functions, suggesting a direct contribution of nicotine to the pathogenesis of chronic-inflammatory diseases via influencing the neutrophil biology

    The herbal extract EPs® 7630 increases the antimicrobial airway defense through monocyte-dependent induction of IL-22 in T cells

    Get PDF
    The phytotherapeutic compound EPs® 7630, an extract manufactured from Pelargonium sidoides roots, is frequently used for the treatment of airway infections. Nevertheless, the knowledge of the mode of action of EPs® 7630 is still sparse. Our study aimed at further elucidating the underlying pharmacological mechanisms by focusing on antimicrobial defense mechanisms of EPs® 7630. While investigating the influence of EPs® 7630 on lymphokine production by PBMCs, we found that EPs® 7630 is a novel inducer of IL-22 and IL-17. This cytokine-inducing effect was most pronounced for IL-22 and clearly dose-dependent starting from 1 μg/ml of the extract. Furthermore, EPs® 7630 pretreatment selectively enhanced the IL-22 and IL-17 production capacity of CD3/28-activated PBMCs while strongly limiting the IFN-γ production capacity of innate lymphoid cells. The relevance of EPs® 7630-induced IL-22 production was proven in vitro and in vivo, where IL-22 provoked a strong increase of the antimicrobial protein S100A9 in lung epithelial cells and pulmonary tissue, respectively. A detailed analysis of IL-22 induction modi revealed no direct influence of EPs® 7630 on the basal or anti-CD3/CD28 antibody-induced IL-22 production by CD4+ memory T cells. In fact, EPs® 7630-induced IL-22 production by CD4+ memory T cells was found to be essentially dependent on soluble mediators (IL-1/IL-23) as well as on direct cellular contact with monocytes. In summary, our study reveals a new immune-modulating function of EPs® 7630 that might confer IL-22 and IL-17-induced protection from bacterial airway infection. KEY MESSAGES: EPs® 7630 selectively strengthens IL-22 and IL-17 production of memory T cells. EPs® 7630 limits the IFN-y production capacity of innate lymphoid cells. EPs® 7630-caused IL-22 production by T cells is essentially dependent on monocytes. IL-22 increase antimicrobial proteins (AMPs) in airway epithelium. EPs® 7630 might protect against airway infection by induction of AMP-inducers

    Targeting Metabolic Syndrome in Hidradenitis Suppurativa by Phytochemicals as a Potential Complementary Therapeutic Strategy

    Get PDF
    Hidradenitis suppurativa (HS) is a chronic inflammatory disease characterized by the appearance of painful inflamed nodules, abscesses, and pus-draining sinus tracts in the intertriginous skin of the groins, buttocks, and perianal and axillary regions. Despite its high prevalence of similar to 0.4-1%, therapeutic options for HS are still limited. Over the past 10 years, it has become clear that HS is a systemic disease, associated with various comorbidities, including metabolic syndrome (MetS) and its sequelae. Accordingly, the life expectancy of HS patients is significantly reduced. MetS, in particular, obesity, can support sustained inflammation and thereby exacerbate skin manifestations and the chronification of HS. However, MetS actually lacks necessary attention in HS therapy, underlining the high medical need for novel therapeutic options. This review directs attention towards the relevance of MetS in HS and evaluates the potential of phytomedical drug candidates to alleviate its components. It starts by describing key facts about HS, the specifics of metabolic alterations in HS patients, and mechanisms by which obesity may exacerbate HS skin alterations. Then, the results from the preclinical studies with phytochemicals on MetS parameters are evaluated and the outcomes of respective randomized controlled clinical trials in healthy people and patients without HS are presented

    A Chandra ACIS Study of the Young Star Cluster Trumpler 15 in Carina and Correlation with Near-infrared Sources

    Full text link
    Using the highest-resolution X-ray observation of the Trumpler 15 star cluster taken by the Chandra X-ray Observatory, we estimate the total size of its stellar population by comparing the X-ray luminosity function of the detected sources to a calibrator cluster, and identify for the first time a significant fraction (~14%) of its individual members. The highest-resolution near-IR observation of Trumpler 15 (taken by the HAWK-I instrument on the VLT) was found to detect most of our X-ray selected sample of cluster members, with a K-excess disk frequency of 3.8+-0.7%. The near-IR data, X-ray luminosity function, and published spectral types of the brightest members support a cluster age estimate (5-10 Myr) that is older than those for the nearby Trumpler 14 and Trumpler 16 clusters, and suggest that high-mass members may have already exploded as supernovae. The morphology of the inner ~0.7 pc core of the cluster is found to be spherical. However, the outer regions (beyond 2 pc) are elongated, forming an `envelope' of stars that, in projection, appears to connect Trumpler 15 to Trumpler 14; this morphology supports the view that these clusters are physically associated. Clear evidence of mass segregation is seen. This study appears in a Special Issue of the ApJS devoted to the Chandra Carina Complex Project (CCCP), a 1.42 square degree Chandra X-ray survey of the Great Nebula in Carina.Comment: Accepted for the ApJS Special Issue on the Chandra Carina Complex Project (CCCP), scheduled for publication in May 2011. All 16 CCCP Special Issue papers are available at http://cochise.astro.psu.edu/Carina_public/special_issue.html through 2011 at least. 30 pages; 8 figures; 3 table
    • …
    corecore